Detect head positions from MTT files
Project description
Detection of LED head stage based on MTT files, used by the BBO lab at caesar research center
Installation
Windows
- Install Anaconda
- Clone git@github.com:bbo-lab/multitrackpy.git
- Open Anaconda prompt via Start Menu
- Using
cd
anddir
, navigate to the multitrackpy folder INSIDE the repository (which may also be named multitrackpy) - Create conda environment using
conda env create -f environment.yml
- Switch to multitrackpy environment:
conda activate multitrackpy
- Add multitrackpy module to conda environment:
conda develop [path to your repository, including repository folder]
You can now run the program with python -m multitrackpy -h
:
usage: __main__.py [-h] --mtt_file MTT_FILE --video_dir VIDEO_DIR
[--linedist_thres LINEDIST_THRES] [--corr_thres CORR_THRES]
[--led_thres LED_THRES] [--n_cpu N_CPU]
START_IDX END_IDX
__main__.py: error: the following arguments are required: START_IDX, END_IDX, --mtt_file, --video_dir
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file bbo-multitrackpy-1.1.0.tar.gz
.
File metadata
- Download URL: bbo-multitrackpy-1.1.0.tar.gz
- Upload date:
- Size: 8.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.25.1 requests-toolbelt/0.9.1 urllib3/1.26.5 tqdm/4.63.0 importlib-metadata/4.0.1 keyring/23.0.1 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fe289166c5678f6d51f824e8b94933abfa5cb939816b51043026d8c604de3efc |
|
MD5 | 7e957f7f408aa60d29d5e96329e1bead |
|
BLAKE2b-256 | 82b4684b942fd7e1b8d6ac6fccc04cef8858aa8a6907cc1fa171aba88dba925e |
File details
Details for the file bbo_multitrackpy-1.1.0-py3-none-any.whl
.
File metadata
- Download URL: bbo_multitrackpy-1.1.0-py3-none-any.whl
- Upload date:
- Size: 10.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.25.1 requests-toolbelt/0.9.1 urllib3/1.26.5 tqdm/4.63.0 importlib-metadata/4.0.1 keyring/23.0.1 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3199b6cd79c072e18aa816376629c7466f0bb92020bf7822a20212b9bc39ff05 |
|
MD5 | 49cd724fd06eafd0a2596659ec3a24af |
|
BLAKE2b-256 | 41b8b7a5700af8eee8dfb8b56f33bb7e13e041f4f69d4dd10d9a5acc3a2a2b1c |