Skip to main content

Detect head positions from MTT files

Project description

Detection of LED head stage based on MTT files, used by the BBO lab at MPI for Neurobiology of Behavior

Installation

Windows

  1. Install Anaconda
  2. Open Anaconda prompt via Start Menu
  3. Create conda environment using conda env create -f conda env create -f https://raw.githubusercontent.com/bbo-lab/multitrackpy/master/environment.yml

Usage

  1. Switch to multitrackpy environment: conda activate multitrackpy
  2. Run the program with python -m multitrackpy -h:
usage: __main__.py [-h] --mtt_file MTT_FILE --video_dir VIDEO_DIR
                   [--linedist_thres LINEDIST_THRES] [--corr_thres CORR_THRES]
                   [--led_thres LED_THRES] [--n_cpu N_CPU]
                   START_IDX END_IDX
__main__.py: error: the following arguments are required: START_IDX, END_IDX, --mtt_file, --video_dir

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bbo-multitrackpy-1.1.5.tar.gz (10.0 kB view details)

Uploaded Source

Built Distribution

bbo_multitrackpy-1.1.5-py3-none-any.whl (12.3 kB view details)

Uploaded Python 3

File details

Details for the file bbo-multitrackpy-1.1.5.tar.gz.

File metadata

  • Download URL: bbo-multitrackpy-1.1.5.tar.gz
  • Upload date:
  • Size: 10.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for bbo-multitrackpy-1.1.5.tar.gz
Algorithm Hash digest
SHA256 574ef37b65aa8c341d6157735e0b87f08a060313d83796533af86b285c3839e1
MD5 9320a281df5d3f05b53b3a198f9cb649
BLAKE2b-256 0d4cfecd548986ff850d467cee3446e66a0fad0e49977e3df6740cff1440800d

See more details on using hashes here.

File details

Details for the file bbo_multitrackpy-1.1.5-py3-none-any.whl.

File metadata

File hashes

Hashes for bbo_multitrackpy-1.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 cc1dafa3ce0ecaaf0f9a47c02dea0af3931f99e4ce30dff5d86a0ead79a06291
MD5 30cc702f8bcc867d81d95084b293a159
BLAKE2b-256 7ef6e1089e1ce54fadfa60f010817fd0b7a8b77a96f7eb443bb9518ef26409ad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page