Manipulate bounding boxes as objects
Project description
bbox-objected
Makes manipulations with bounding boxes easier in Computer Vision projects. With zero dependencies by default.
Installation:
pip install bbox-objected
Optional dependencies:
pip install numpy
pip install opencv-python
or pip install opencv-contrib-python
Examples:
AbsBBox
is needed to store absolute coordinates (uses int
type strictly)
from bbox_objected import AbsBBox
bbox = AbsBBox((35, 45, 100, 80), kind="x1y1wh", text="abs_sample")
assert repr(bbox) == "<AbsBBox(x1=35, y1=45, x2=135, y2=125) - abs_sample>"
assert bbox.get_x1y1x2y2() == (35, 45, 135, 125)
If you need to store relative coordinates, you can use RelBBox
(values in range [0., 1.])
from bbox_objected import RelBBox
bbox = RelBBox((0.1, 0.2, 0.5, 0.6), kind="x1x2y1y2", text="rel_sample")
assert repr(bbox) == "<RelBBox(x1=0.1, y1=0.5, x2=0.2, y2=0.6) - rel_sample>"
assert bbox.get_tl_tr_br_bl() == ((0.1, 0.5), (0.2, 0.5), (0.2, 0.6), (0.1, 0.6))
Conversion between types is available
from bbox_objected import RelBBox
bbox = RelBBox((0.1, 0.2, 0.5, 0.6), kind="x1y1x2y2", text="sample")
assert repr(bbox) == "<RelBBox(x1=0.1, y1=0.2, x2=0.5, y2=0.6) - sample>"
assert (
repr(bbox.as_abs(1920, 1080))
== "<AbsBBox(x1=192, y1=216, x2=960, y2=648) - sample>"
)
assert (
bbox.as_abs(1920, 1080).as_rel(1920, 1080) is not bbox
)
There is a bunch of attributes for each bbox
from bbox_objected import RelBBox, AbsBBox
bbox = AbsBBox((40, 40, 60, 60))
assert (bbox.x1, bbox.y1, bbox.x2, bbox.y2) == (40, 40, 60, 60)
assert (bbox.w, bbox.h) == (20, 20)
assert (bbox.tl, bbox.tr, bbox.br, bbox.bl) == ((40, 40), (60, 40), (60, 60), (40, 60))
bbox = AbsBBox((40, 40, 60, 60))
assert (bbox.center, bbox.area) == ((50.0, 50.0), 400)
assert (bbox.xc, bbox.yc) == (50.0, 50.0)
Available kinds of bboxes:
from bbox_objected.types import BBoxKind
# special format of 'EasyOCR' library
assert BBoxKind.free_list == "tl_tr_br_bl"
assert BBoxKind.tl_tr_br_bl == "tl_tr_br_bl"
# special format of 'EasyOCR' library
assert BBoxKind.horizontal_list == "x1x2y1y2"
assert BBoxKind.x1x2y1y2 == "x1x2y1y2"
# own format of PascalVOC image dataset
assert BBoxKind.pascal_voc == "x1y1x2y2"
assert BBoxKind.x1y1x2y2 == "x1y1x2y2"
# own format of COCO image dataset
assert BBoxKind.coco == "x1y1wh"
assert BBoxKind.x1y1wh == "x1y1wh"
# gets object of '.rectangle()' method of 'PyWinAuto' library
assert BBoxKind.pywinauto == "pywinauto"
# gets special coords format of 'WinOCR' library
assert BBoxKind.winocr == "winocr"
# gets 'monitor' object of library 'mss'
assert BBoxKind.mss == "mss"
There is respective get_
method for each bbox kind, except "pywinauto"
and "winocr"
Some simple editing of bboxes is also available
from bbox_objected import AbsBBox
bbox = AbsBBox((100, 200, 300, 400))
assert repr(bbox) == "<AbsBBox(x1=100, y1=200, x2=300, y2=400)>"
bbox.zero_basis()
assert repr(bbox) == "<AbsBBox(x1=0, y1=0, x2=200, y2=200)>"
bbox.move_basis(25, 45)
assert repr(bbox) == "<AbsBBox(x1=25, y1=45, x2=225, y2=245)>"
other_bbox = AbsBBox((200, 300, 400, 500))
assert repr(other_bbox) == "<AbsBBox(x1=200, y1=300, x2=400, y2=500)>"
# chooses coords to get max area, doesn't create new instance
bbox.update_from(other_bbox)
assert repr(bbox) == "<AbsBBox(x1=25, y1=45, x2=400, y2=500)>"
# takes all coords from 'other', doesn't create new instance
bbox.replace_from(other_bbox)
assert repr(bbox) == "<AbsBBox(x1=200, y1=300, x2=400, y2=500)>"
Additional functionality:
Each bbox can be drawn or cropped from image. Can work both with AbsBBox
and RelBBox
import numpy as np
import cv2
from bbox_objected import AbsBBox
bbox = AbsBBox((100, 200, 300, 400)) # 'x1y1x2y2' bbox kind is default
img = np.empty((512, 512, 3), dtype=np.uint8) # random RGB image
cropped = bbox.crop_from(img) # 'numpy' must be installed
assert cropped.shape == (200, 200, 3)
bbox.show_on(img, text="sample") # 'opencv' must be installed
cv2.waitKey(1)
cv2.destroyAllWindows()
Also, there are several useful functions. Currently works only with AbsBBox
.
from bbox_objected import AbsBBox
from bbox_objected.bbox_utils import get_distance, get_IoU, get_cos_between
bbox_1 = AbsBBox((100, 200, 300, 400), kind="x1y1wh")
bbox_2 = AbsBBox((100, 400, 100, 400), kind="horizontal_list")
assert get_distance(bbox_1, bbox_2) == 150.0
# Intersection over Union
assert get_IoU(bbox_1, bbox_2) == 0.4
# angle around center in (450 ,350)
assert get_cos_between(bbox_1, bbox_2, 450, 350) == 0.7592566023652966
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file bbox_objected-0.2.7.tar.gz
.
File metadata
- Download URL: bbox_objected-0.2.7.tar.gz
- Upload date:
- Size: 10.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: pdm/2.12.3 CPython/3.12.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0dc613470164d562c9e8abc2927bc954601be217daa3aae292897d9c95cd1f45 |
|
MD5 | e5b7a9ecab88c5e591136f1966d367ed |
|
BLAKE2b-256 | 8a8a37318925f7cfc0060f6db81c49a01901680a57cca600f82114a406e28418 |
File details
Details for the file bbox_objected-0.2.7-py3-none-any.whl
.
File metadata
- Download URL: bbox_objected-0.2.7-py3-none-any.whl
- Upload date:
- Size: 12.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: pdm/2.12.3 CPython/3.12.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7e3717f02aca02fb6b8856260526944f3a0a7b8278da5068ab5cbea3175d6768 |
|
MD5 | 5b4f2604f5cbc23b9bbbd0950106360c |
|
BLAKE2b-256 | f5c2433e3e6b5762fd38f68291c165a39b5e81d7f3d3b44ca1974fefafa4648c |