BNMR/BNQR Beamspot Image Viewer and Analysis
Project description
Draw and process BNMR CCD image files
Object for reading and processing fits files taken by the BNMR or BNQR CCD camera.
bccd.fits
Constructor:
fits(filename,rescale_pixels=True)
Functions:
# look for shapes in image
detect_lines(sigma=1,min_length=50,min_gap=3,theta=None,nlines=np.inf,draw=True)
detect_hlines(sigma=1,min_length=50,min_gap=3,nlines=np.inf,draw=True,**kwargs)
detect_circles(rad_range,nlines=1,sigma=1,draw=True)
# drawing and visualization
draw(black=0,alpha=1,cmap='Greys',imap=True)
draw_2Dfit(fn,*pars,levels=10,cmap='jet')
draw_contour(nlevels=5,alpha=1,cmap='Greys',imap=True)
draw_edges(sigma=1,alpha=1,cmap='Greys',imap=True)
draw_sobel(alpha=1,cmap='Greys',imap=False)
# fitting
fit2D(function,**fitargs)
fit_gaussian2D(draw=True,**fitargs)
# processing
get_center(draw=True)
get_cm(draw=True)
get_gaussian2D_overlap(ylo,yhi,xlo,xhi)
# worker functions
read(filename,rescale_pixels=True)
set_black(black)
set_mask(mask)
Data fields:
black: float, pixel value corresponding to black (zero)
data: 2D numpy array, pixel values
data_original: numpy array, pixel values
header: dict, header information
mask: (x,y,r) specifying circle to mask on
result_center: (par,names) fitting results
result_cm: (par,names) center of mass results
result_fit2D: (par,cov) fitting results
result_gaussian2D: (par,cov,names) fitting results
result_gaussian2D_overlap: float, overlap
Some useful colourmap names:
Greys
Purples
Yellows
Blues
Oranges
Reds
Greens
Parameter descriptions
alpha: float, image transparency. Range: [0,1].
black: float, value to set to black, all pixels of lower value raised to this level. Use to
clean up noise.
cmap: str, color map to color the image. Ex: "Reds", "Greens", etc.
draw: bool, if true, draw output
filename: str, path to .fits file
fitargs: **dict, arguments passed to curve_fit
fn: function handle, function to draw
imap: bool, if True, invert color map colours
levels: int, number of contour levels to draw
kwargs: **dict, unused
mask: tuple, exclude all pixels outside of circle from draw or calculation. (x0,y0,r)
min_length: float, minimum length of lines to find, in pixels
min_gap: float, maximum acceptable distance between line pixels which do not signify breaking
the line
nlines: int, number of shapes to find
pars: *tuple, parameters passed to fn.
rad_range: tuple, radius range to seach in (r_lo, r_hi)
rescale_pixels: bool, pixels are intrinsically asymmetric. Rescale image such that the pixels are
square, interpolating pixel values with 3rd order spline.
shape: tuple, shape of the image (number of pixels x,y)
sigma: float, standard deviation of rolling Gaussian filter, smoothing image features.
theta: float, list of acceptable angles for the lines to point
xlo: function handle, lower integration bound [inner]
xlhi: function handle, upper integration bound [inner]
ylo: float, lower integration bound [outer]
yhi: float, upper integration bound [outer]
bccd.functions
gaussian2D(x,y,x0,y0,sigmax,sigmay,amp,theta=0)
Parameter descriptions
amp: float, unused in favour of normalized amplitude (present for ease of use)
sx,sy: float, standard deviation
theta: float, angle of rotation
x0,y0: float, gaussian mean location
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
bccd-2.4.0.tar.gz
(47.9 kB
view hashes)