Skip to main content

Brain decoder toolbox for Python

Project description

BdPy

PyPI version GitHub license ci

Python package for brain decoding analysis

Requirements

  • Python 3.8 or later
  • numpy
  • scipy
  • scikit-learn
  • pandas
  • h5py
  • hdf5storage
  • pyyaml

Optional requirements

  • dataform module
    • pandas
  • dl.caffe module
    • Caffe
    • Pillow
    • tqdm
  • dl.torch module
    • PyTorch
    • Pillow
  • fig module
    • matplotlib
    • Pillow
  • mri module
    • nipy
    • nibabel
    • pandas
  • recon.torch module
    • PyTorch
    • Pillow

Installation

Latest stable release:

$ pip install bdpy

To install the latest development version ("master" branch of the repository), please run the following command.

$ pip install git+https://github.com/KamitaniLab/bdpy.git

Packages

  • bdata: BdPy data format (BData) core package
  • dataform: Utilities for various data format
  • distcomp: Distributed computation utilities
  • dl: Deep learning utilities
  • feature: Utilities for DNN features
  • fig: Utilities for figure creation
  • ml: Machine learning utilities
  • mri: MRI utilities
  • opendata: Open data utilities
  • preproc: Utilities for preprocessing
  • recon: Reconstruction methods
  • stats: Utilities for statistics
  • util: Miscellaneous utilities

BdPy data format

BdPy data format (or BrainDecoderToolbox2 data format; BData) consists of two variables: dataset and metadata. dataset stores brain activity data (e.g., voxel signal value for fMRI data), target variables (e.g., ID of stimuli for vision experiments), and additional information specifying experimental design (e.g., run and block numbers for fMRI experiments). Each row corresponds to a single 'sample', and each column representes either single feature (voxel), target, or experiment design information. metadata contains data describing meta-information for each column in dataset.

See BData API examples for useage of BData.

Developers

  • Shuntaro C. Aoki (Kyoto Univ)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bdpy-0.21.1.tar.gz (80.3 kB view details)

Uploaded Source

Built Distribution

bdpy-0.21.1-py3-none-any.whl (100.9 kB view details)

Uploaded Python 3

File details

Details for the file bdpy-0.21.1.tar.gz.

File metadata

  • Download URL: bdpy-0.21.1.tar.gz
  • Upload date:
  • Size: 80.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for bdpy-0.21.1.tar.gz
Algorithm Hash digest
SHA256 0d5b07ab1bb47bd10f4f2104386530f44c27b62f7b8540e3aa06d28020ca65ea
MD5 417c0ac86168ca90b625c9885b195cc3
BLAKE2b-256 b8755e059142b609c7237e3ab1bbd943231a489398401233b2020545a5b17e49

See more details on using hashes here.

File details

Details for the file bdpy-0.21.1-py3-none-any.whl.

File metadata

  • Download URL: bdpy-0.21.1-py3-none-any.whl
  • Upload date:
  • Size: 100.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for bdpy-0.21.1-py3-none-any.whl
Algorithm Hash digest
SHA256 cc67eec79bdf571851b64f45de4e1ee50d15eaa21d0b4ba3771f46a80641fb93
MD5 9568b75a7041b7b16cadbdc6406ecd15
BLAKE2b-256 fd5ad84610b9986478bacdef32a0095e89e5759157d1db052a3fb68dd05d956c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page