Skip to main content

Brain decoder toolbox for Python

Project description

BdPy

PyPI version GitHub license ci

Python package for brain decoding analysis

Requirements

  • Python 3.8 or later
  • numpy
  • scipy
  • scikit-learn
  • pandas
  • h5py
  • hdf5storage
  • pyyaml

Optional requirements

  • dataform module
    • pandas
  • dl.caffe module
    • Caffe
    • Pillow
    • tqdm
  • dl.torch module
    • PyTorch
    • Pillow
  • fig module
    • matplotlib
    • Pillow
  • bdpy.ml module
    • tqdm
  • mri module
    • nipy
    • nibabel
    • pandas
  • recon.torch module
    • PyTorch
    • Pillow

Optional requirements for testing

  • fastl2lir

Installation

Latest stable release:

$ pip install bdpy

To install the latest development version ("master" branch of the repository), please run the following command.

$ pip install git+https://github.com/KamitaniLab/bdpy.git

Packages

  • bdata: BdPy data format (BData) core package
  • dataform: Utilities for various data format
  • distcomp: Distributed computation utilities
  • dl: Deep learning utilities
  • feature: Utilities for DNN features
  • fig: Utilities for figure creation
  • ml: Machine learning utilities
  • mri: MRI utilities
  • opendata: Open data utilities
  • preproc: Utilities for preprocessing
  • recon: Reconstruction methods
  • stats: Utilities for statistics
  • util: Miscellaneous utilities

BdPy data format

BdPy data format (or BrainDecoderToolbox2 data format; BData) consists of two variables: dataset and metadata. dataset stores brain activity data (e.g., voxel signal value for fMRI data), target variables (e.g., ID of stimuli for vision experiments), and additional information specifying experimental design (e.g., run and block numbers for fMRI experiments). Each row corresponds to a single 'sample', and each column representes either single feature (voxel), target, or experiment design information. metadata contains data describing meta-information for each column in dataset.

See BData API examples for useage of BData.

Developers

  • Shuntaro C. Aoki (Kyoto Univ)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bdpy-0.24.tar.gz (95.2 kB view details)

Uploaded Source

Built Distribution

bdpy-0.24-py3-none-any.whl (122.6 kB view details)

Uploaded Python 3

File details

Details for the file bdpy-0.24.tar.gz.

File metadata

  • Download URL: bdpy-0.24.tar.gz
  • Upload date:
  • Size: 95.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/7.0.1 pkginfo/1.10.0 requests/2.31.0 requests-toolbelt/1.0.0 tqdm/4.66.4 CPython/3.8.5

File hashes

Hashes for bdpy-0.24.tar.gz
Algorithm Hash digest
SHA256 bc8d805c91e2de575394cd7895a89288727ee852460e95611d7ab5470a662270
MD5 35cc02d0fa44619f530ff568d634792c
BLAKE2b-256 a0451bc7741239b2afb45d465cac0711dba339deea9e31344664569d0ab2be97

See more details on using hashes here.

File details

Details for the file bdpy-0.24-py3-none-any.whl.

File metadata

  • Download URL: bdpy-0.24-py3-none-any.whl
  • Upload date:
  • Size: 122.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/7.0.1 pkginfo/1.10.0 requests/2.31.0 requests-toolbelt/1.0.0 tqdm/4.66.4 CPython/3.8.5

File hashes

Hashes for bdpy-0.24-py3-none-any.whl
Algorithm Hash digest
SHA256 8e715b623a9438c396469cd937c8e67b69d4987957d98ebd68dde2a1d0137899
MD5 d126e2ad8b062db4411f0c3ad1750368
BLAKE2b-256 18c0034ea620ac7aefb13595fc526b32a8fcde435b9e7c62379ceb3c74e9e2bb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page