Blob Detection and Source Finder
Project description
PyBDSF (the Python Blob Detection and Source Finder) is a tool designed to decompose radio interferometry images into sources and make available their properties for further use. PyBDSF can decompose an image into a set of Gaussians, shapelets, or wavelets as well as calculate spectral indices and polarization properties of sources and measure the psf variation across an image. PyBDSF uses an interactive environment based on CASA that will be familiar to most radio astronomers. Additionally, PyBDSF may also be used in Python scripts.
The documentation is currently hosted at https://pybdsf.readthedocs.io
Installation
Installation can be done in a number of ways. In order of preference (read: ease of use):
Install the latest release from PyPI:
pip install bdsf
Install the master branch from the PyBDSF git repository:
pip install git+https://github.com/lofar-astron/PyBDSF.git
Or install a specific revision or release, for example v1.9.3:
pip install git+https://github.com/lofar-astron/PyBDSF.git@v1.9.3
Install from a local source tree, e.g. after you cloned the git repository:
pip install .
or (to install the interactive shell as well):
pip install .[ishell]
If you get the error:
RuntimeError: module compiled against API version 0xf but this version of numpy is 0xd
then please update numpy with pip install -U numpy.
External requirements include the ubuntu packages (or similar packages in another Linux distribution):
gfortran
libboost-python-dev
libboost-numpy-dev (Only if boost > 1.63)
python-setuptools.
Also, a working numpy installation is required. At runtime, you will need scipy and either pyfits and pywcs or python-casacore or astropy.
If you install as a user not using conda, use pip install --user. Make sure to use similar versions for gcc, g++ and gfortran (use update-alternatives if multiple versions of gcc/g++/gfortran are present on the system). In this case, the script pybdsf is installed in ~/.local/bin, so you might want to add that to your $PATH.
Installation on MacOS / OSX is more involved, you will need the packages mentioned above, for example installed with Homebrew. You will need to tell setup.py to use the same compiler for fortran as for C++. In case of problems, see https://github.com/lofar-astron/PyBDSF/issues/104#issuecomment-509267088 for some possible steps to try.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for bdsf-1.11.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5fe2e66e8e6be7fda9c36b44a5584489a5f8792da94087d76442b092e55ea142 |
|
MD5 | a581d8b24757adb8355bb31c04622372 |
|
BLAKE2b-256 | d5ee301d7e88829430fed59928887ece70d67ec79318d08a283ce8db524d7b2a |
Hashes for bdsf-1.11.1-cp312-cp312-macosx_14_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e08ea6ed50bac40b738ac33280bc6dd364ccc2f4d098fec2b1b23b8de9f9c521 |
|
MD5 | cdaebbcf6ab88177160d9dae6cfb3df7 |
|
BLAKE2b-256 | e539e720b31174742405f785366053a9b295554f8c3998afba049a081de8a1a5 |
Hashes for bdsf-1.11.1-cp312-cp312-macosx_12_0_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1b858e39b40834cdc1cd5bec5ee1a036eb7610bf922682a567f9d687a62257c6 |
|
MD5 | 83cfe70087ccc88cc639d5b288cb81f3 |
|
BLAKE2b-256 | c6681c930279d21f7ce03057fe1a4c534c3fcdd620d89893ece6be2a03bce70e |
Hashes for bdsf-1.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d683101b650e3d850a908c1afbaf5d3ccbff155e0a9057abab465f9e2f9760e9 |
|
MD5 | 4b98ce811463d9eab3f1e5e0e18cbb7b |
|
BLAKE2b-256 | bc18e298a911c991cbd025df9c09915f6c7cec2efabda8565444453591be3604 |
Hashes for bdsf-1.11.1-cp311-cp311-macosx_14_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 62a19ed8a74d61d47cb833c4341952c06b71831263330fb3e070fc1f26fc1b40 |
|
MD5 | 3af3543f901a3be9422fc96f4451b135 |
|
BLAKE2b-256 | dd3a75861938dbbc30d5202986f0015f6abf3d7d22a2f9785489755df7ec1a6c |
Hashes for bdsf-1.11.1-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ac84b4f03e6598ab1ba4a49209d93686877d32804d5961cd430f838029d48718 |
|
MD5 | e1f1c821e0bc289943a3586971c0d8e3 |
|
BLAKE2b-256 | 6daac54e352c1919fd5d0b7d4d203165559efda82bbf007966852eb5da3ae3e8 |
Hashes for bdsf-1.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c3e08ff73fbb65271a4a030431cb6ce7922a0bebd64772ad8d0e128b663d8e11 |
|
MD5 | 5e5e6f51c363ed2d6553a0878e99b40c |
|
BLAKE2b-256 | d2ab156e2e661190a4844cea6ca4b85e16d72c3768c4b68507cc4e270a7295ab |
Hashes for bdsf-1.11.1-cp310-cp310-macosx_14_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c31017f995c3869bf1e8ee9859d35218b05edae18f42850858cd12129c4b3cd5 |
|
MD5 | 85da143ab9b5a34dff0c4261894fc2a9 |
|
BLAKE2b-256 | a973de6ec2e2198a5577ef137fecf1681b89b33af9651ce66cf65c732393bf54 |
Hashes for bdsf-1.11.1-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0062d932bca1c23e6f728b7ede9cc5329793c7d94c3e902a15c9d3b86b1681fa |
|
MD5 | c6a027934c32515536b01d590c7f5f5d |
|
BLAKE2b-256 | 22416516b1804adbfbd988de557ee69c0abce4e51a31b9d0421c38b417694bf6 |
Hashes for bdsf-1.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5b01f6875d174634e6fd4f81e6cef0aec83cfbc0721128496cdc7f400257a8ca |
|
MD5 | d55904733f3a4d82bb05f775c0f50a0a |
|
BLAKE2b-256 | 7e82d4417a3f9cb4a257d0dd0ee1c12347e6dad557948f528a14aad9b53724c5 |
Hashes for bdsf-1.11.1-cp39-cp39-macosx_14_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7f5fb0ed688231c243ebbd744b8d0f564c48e8b226775dfee704633e06caaf5e |
|
MD5 | de142e134ca47c8102d1bfb4a7ee400e |
|
BLAKE2b-256 | bc61f897dd502a2f2c623d8051b004507e987af3faf226511d63b59aff91ddfa |
Hashes for bdsf-1.11.1-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ef24bce726ff3abc915a7bbb63222e9460911b590cba127cc64aa111e6346a0b |
|
MD5 | 87074816ea5389283e50a03b024416e4 |
|
BLAKE2b-256 | 0f2d24d471edcdfd5b73e407dbf71d80b69586bbe25d91d098b9a7bf38a2f05f |
Hashes for bdsf-1.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ab6b931413d52bee269d74651889226d279f5b412b563c8b5db9c2e4f7328aca |
|
MD5 | 40da50169b43b19dce48a13e45c10a9c |
|
BLAKE2b-256 | ba66c512effb3782b43db6b133148ff331a7989a9df0dbb240e89fe0c4f14c68 |
Hashes for bdsf-1.11.1-cp38-cp38-macosx_14_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 820340a1c2efad05f5519a4678190edf4f1e4a702ccd30764d28c2d8f74b414d |
|
MD5 | 6be5cf390179a981b61fad48bea67f19 |
|
BLAKE2b-256 | dd0a627d551faefcedb3f1fb1c3c14032edf18406d3172014503ac6e421a1d9d |
Hashes for bdsf-1.11.1-cp38-cp38-macosx_12_0_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | de179671e699cb50656f7b778b6f5c31654e0b1e7937ca192560216a32c1bdc0 |
|
MD5 | b8582a54b99c2f5c781bb4837bfa8472 |
|
BLAKE2b-256 | e200d71939a693c4c5ebeef9edc3e45eea0ac2f5a278c473aba843a4a3369434 |