Skip to main content

MongoDB ODM based on Pydantic and Motor

Project description

https://raw.githubusercontent.com/roman-right/beanie/main/assets/logo/with_text.svg

Beanie - is an asynchronous ODM for MongoDB, based on Motor and Pydantic.

It uses an abstraction over Pydantic models and Motor collections to work with the database. Class Document allows to create, replace, update, get, find and aggregate.

Here you can see, how to use Beanie, in simple examples:

Installation

PIP

pip install beanie

Poetry

poetry add beanie

Usage

Init

from typing import List

import motor
from pydantic import BaseSettings, BaseModel

from collections import Collection
from documents import Document

# CREATE BEANIE DOCUMENT STRUCTURE

class SubDocument(BaseModel):
    test_str: str


class DocumentTestModel(Document):
    test_int: int
    test_list: List[SubDocument]
    test_str: str

# CREATE MOTOR CLIENT AND DB

client = motor.motor_asyncio.AsyncIOMotorClient(
    "mongodb://user:pass@host:27017/db",
    serverSelectionTimeoutMS=100
)
db = client.beanie_db

# INIT BEANIE

init_beanie(database=db, document_models=[DocumentTestModel])

Create

Create a document (insert it)

document = DocumentTestModel(
    test_int=42,
    test_list=[SubDocument(test_str="foo"), SubDocument(test_str="bar")],
    test_str="kipasa",
)

await document.create()

Insert one document

document = DocumentTestModel(
    test_int=42,
    test_list=[SubDocument(test_str="foo"), SubDocument(test_str="bar")],
    test_str="kipasa",
)

await DocumentTestModel.insert_one(document)

Insert many documents

document_1 = DocumentTestModel(
    test_int=42,
    test_list=[SubDocument(test_str="foo"), SubDocument(test_str="bar")],
    test_str="kipasa",
)
document_2 = DocumentTestModel(
    test_int=42,
    test_list=[SubDocument(test_str="foo"), SubDocument(test_str="bar")],
    test_str="kipasa",
)

await DocumentTestModel.insert_many([document_1, document_2])

Find

Get the document

document = await DocumentTestModel.get(DOCUMENT_ID)

Find one document

document = await DocumentTestModel.find_one({"test_str": "kipasa"})

Find many documents

async for document in DocumentTestModel.find_many({"test_str": "uno"}):
    print(document)

OR

documents =  await DocumentTestModel.find_many({"test_str": "uno"}).to_list()

Find all the documents

async for document in DocumentTestModel.find_all()
    print(document)

OR

documents = await DocumentTestModel.find_all().to_list()

Update

Replace the document (full update)

document.test_str = "REPLACED_VALUE"
await document.replace()

Replace one document

Replace one doc data by another

new_doc = DocumentTestModel(
    test_int=0,
    test_str='REPLACED_VALUE',
    test_list=[]
)
await DocumentTestModel.replace_one({"_id": document.id}, new_doc)

Update the document (partial update)

in this example, I’ll add an item to the document’s “test_list” field

to_insert = SubDocument(test_str="test")
await document.update(update_query={"$push": {"test_list": to_insert.dict()}})

Update one document

await DocumentTestModel.update_one(
    update_query={"$set": {"test_list.$.test_str": "foo_foo"}},
    filter_query={"_id": document.id, "test_list.test_str": "foo"},
)

Update many documents

await DocumentTestModel.update_many(
    update_query={"$set": {"test_str": "bar"}},
    filter_query={"test_str": "foo"},
)

Update all the documents

await DocumentTestModel.update_all(
    update_query={"$set": {"test_str": "bar"}}
)

Delete

Delete the document

await document.delete()

Delete one documents

await DocumentTestModel.delete_one({"test_str": "uno"})

Delete many documents

await DocumentTestModel.delete_many({"test_str": "dos"})

Delete all the documents

await DocumentTestModel.delete_all()

Aggregate

async for item in DocumentTestModel.aggregate(
    [{"$group": {"_id": "$test_str", "total": {"$sum": "$test_int"}}}]
):
    print(item)

OR

class OutputItem(BaseModel):
    id: str = Field(None, alias="_id")
    total: int

async for item in DocumentTestModel.aggregate(
    [{"$group": {"_id": "$test_str", "total": {"$sum": "$test_int"}}}],
    item_model=OutputModel
):
    print(item)

OR

results = await DocumentTestModel.aggregate(
    [{"$group": {"_id": "$test_str", "total": {"$sum": "$test_int"}}}],
    item_model=OutputModel
).to_list()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

beanie-0.2.1.tar.gz (10.6 kB view details)

Uploaded Source

Built Distribution

beanie-0.2.1-py3-none-any.whl (14.4 kB view details)

Uploaded Python 3

File details

Details for the file beanie-0.2.1.tar.gz.

File metadata

  • Download URL: beanie-0.2.1.tar.gz
  • Upload date:
  • Size: 10.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.8.5 Linux/5.8.0-44-generic

File hashes

Hashes for beanie-0.2.1.tar.gz
Algorithm Hash digest
SHA256 357cb229cad0225d6906f0072bb6cab05bf86f4eaaf99d6408366b4fd65aac71
MD5 fed5a06452e682bc7e6505f09e702bee
BLAKE2b-256 b6938b476ddf2dbf1f5d43ba96416453318b787be187d4b0d90bea51ce402fb0

See more details on using hashes here.

File details

Details for the file beanie-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: beanie-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 14.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.8.5 Linux/5.8.0-44-generic

File hashes

Hashes for beanie-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 dc306033ffe9bf4bc287fcfd952121f10d8c9130a5727c90871c47e45d042808
MD5 827f1bae315be42c49d9aec9ecdd559f
BLAKE2b-256 112078d5f8a6e90309fbca1e13ea404c0f38eabbc7884f36959bff24aee42ff8

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page