Skip to main content

Simple and beautiful way to create date and datetime objects in Python.

Project description

Beautiful Date

PyPI version Tests Downloads

Simple and beautiful way to create date and datetime objects in Python.

Before:

from datetime import date, datetime

d = date(year=2018, month=3, day=25)
t = datetime(year=2018, month=3, day=25, hour=23, minute=45)

After:

from beautiful_date import *

d = 25/Mar/2018
t = (25/Mar/2018)[23:45]

Installation

pip install beautiful-date

Examples

Create Date

Using months names:

>>> from beautiful_date import *

>>> 25/Mar/2018  # European format
BeautifulDate(2018, 3, 25)
>>> Mar/25/2018  # US format
BeautifulDate(2018, 3, 25)

Using months numbers:

>>> 25/M[3]/2018  # European format
BeautifulDate(2018, 3, 25)
>>> M[3]/25/2018  # US format
BeautifulDate(2018, 3, 25)

Or alternatively:

>>> D @ 25/3/2018  # European format (default)
BeautifulDate(2018, 3, 25)

>>> D = MDY()  # Add this at the top of your script to use US format. 
>>> d = D @ 3/25/2018  # US format
BeautifulDate(2018, 3, 25)

You can also easily retrieve current date as a BeautifulDate object and current time using:

>>> D.today()
BeautifulDate(2020, 8, 24)

>>> D.now()
datetime.datetime(2020, 8, 24, 0, 59, 12, 451363)

>>> D.tomorrow()
BeautifulDate(2020, 8, 25)

>>> D.yesterday()
BeautifulDate(2020, 8, 23)

Create Datetime

Previous methods create BeautifulDate objects which are inherited from date but can be easily extended to datetime using indexing/slicing:

>>> (Oct/16/1995)[:]
datetime.datetime(1995, 10, 16, 0, 0)

>>> (Oct/16/1995)[23]
datetime.datetime(1995, 10, 16, 23, 0)

>>> (Oct/16/1995)[23:14]
datetime.datetime(1995, 10, 16, 23, 14)

>>> (Oct/16/1995)[23:14:10]
datetime.datetime(1995, 10, 16, 23, 14, 10)

You can also use prefix D @ if you need months by their numbers:

>>> (D @ 16/10/1995)[:]
datetime.datetime(1995, 10, 16, 0, 0)

>>> (D @ 16/10/1995)[23]
datetime.datetime(1995, 10, 16, 23, 0)

>>> (D @ 16/10/1995)[23:14]
datetime.datetime(1995, 10, 16, 23, 14)

>>> (D @ 16/10/1995)[23:14:10]
datetime.datetime(1995, 10, 16, 23, 14, 10)

Date/Datetime manipulations:

This library also provides simple interface for relativedelta from dateutil

Notice that singular time unit (year, month, ...) sets given value, plural (years, months,) adds it.

Shortcuts:

>>> 5*days.from_today
BeautifulDate(2023, 9, 17)

>>> 1*hours.from_now
datetime.datetime(2023, 9, 12, 12, 53, 56)

>>> 3*days.since(15/Mar/2023)
BeautifulDate(2023, 3, 18)

>>> 5*days.until_today
BeautifulDate(2023, 9, 7)

>>> 1*hours.until_now
datetime.datetime(2023, 9, 12, 11, 13, 4)

>>> 3*days.until(15/Mar/2023)
BeautifulDate(2023, 3, 12)

Adding/Subtracting/Setting timedeltas:

>>> d = 26/Mar/2018
>>> t = d[12:23:15]

>>> d + 2 * years
BeautifulDate(2020, 3, 26)
>>> d - 2 * days
BeautifulDate(2018, 3, 24)

>>> t + 25 * hours
datetime.datetime(2018, 3, 27, 13, 23, 15)

Available deltas: years, months, weeks, days, hours, minutes, seconds, microseconds, leapdays (see relativedelta).

>>> d = 26/Mar/2018
>>> t = d[12:23:15]

>>> d + 2022 * year
BeautifulDate(2022, 3, 26)
>>> d += 2 * day
>>> d
BeautifulDate(2018, 3, 2)

>>> t + 22 * hour
datetime.datetime(2018, 3, 26, 22, 23, 15)
>>> t += 22 * hour
>>> t
datetime.datetime(2018, 3, 26, 22, 23, 15)

Available setters: year, month, day, hour, minute, second, microsecond, yearday and nlyearday (see relativedelta).

Weekdays:

Get next Monday:

>>> d = 29/Mar/2018  # Thursday
>>> d + MO  # Equivalent to MO(1)
BeautifulDate(2018, 4, 2)

Get second to next Monday:

>>> d = 29/Mar/2018
>>> d + MO(2)
BeautifulDate(2018, 4, 9)

Get last Saturday:

>>> d = 29/Mar/2018
>>> d - SA
BeautifulDate(2018, 3, 24)

Get second to last Saturday:

>>> d = 29/Mar/2018
>>> d - SA(2)
BeautifulDate(2018, 3, 17)

Get second to last Saturday (same as previous):

>>> d = 29/Mar/2018
>>> d + SA(-2)
BeautifulDate(2018, 3, 17)

Util

drange:

You can use drange to generate ranges of dates:

>>> for d in drange(27/Mar/1994, 5/Apr/1994):
...     print(d)
1994-03-27
1994-03-28
1994-03-29
1994-03-30
1994-03-31
1994-04-01
1994-04-02
1994-04-03
1994-04-04

>>> for d in drange(27/Mar/1994, 5/Apr/1994, 2*days):
...     print(d)
1994-03-27
1994-03-29
1994-03-31
1994-04-02
1994-04-04

and datetimes:

>>> for dt in drange((27/Mar/1994)[10:25], (4/Apr/1994)[10:10]):
...     print(dt)
1994-03-27 10:25:00
1994-03-28 10:25:00
1994-03-29 10:25:00
1994-03-30 10:25:00
1994-03-31 10:25:00
1994-04-01 10:25:00
1994-04-02 10:25:00
1994-04-03 10:25:00

>>> for dt in drange((27/Mar/1994)[10:25], (4/Apr/1994)[10:10], 20*hours):
...     print(dt)
1994-03-27 10:25:00
1994-03-28 06:25:00
1994-03-29 02:25:00
1994-03-29 22:25:00
1994-03-30 18:25:00
1994-03-31 14:25:00
1994-04-01 10:25:00
1994-04-02 06:25:00
1994-04-03 02:25:00
1994-04-03 22:25:00

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

beautiful-date-2.3.0.tar.gz (7.9 kB view details)

Uploaded Source

Built Distribution

beautiful_date-2.3.0-py2.py3-none-any.whl (8.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file beautiful-date-2.3.0.tar.gz.

File metadata

  • Download URL: beautiful-date-2.3.0.tar.gz
  • Upload date:
  • Size: 7.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for beautiful-date-2.3.0.tar.gz
Algorithm Hash digest
SHA256 bb9db8f572298ce992a1d7542a22e2bb4959c401bfd451ab02dcbf2732054879
MD5 d92cac97de1c4912f2ef33b1f0c0fc53
BLAKE2b-256 d0cdda33e942d76ae5294763e62fb4e6504a3bc184618f6e78ec6a0f9c8ae05e

See more details on using hashes here.

File details

Details for the file beautiful_date-2.3.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for beautiful_date-2.3.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 5d11a87ae24912d78bc0d30db21052b68011a65e1070647eb09d2e11a1f1a610
MD5 8d421fe04673c7e7273bcd42854ff454
BLAKE2b-256 74485754e015612d79d36d4da499941f8e433a9ce8e96be98fab99dc5511f662

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page