A Python LLM framework for interacting with AWS Bedrock services, built on top of boto3. This library serves as a comprehensive tool for fast prototyping, building POCs, and deploying production-ready LLM applications with robust infrastructure support.
Project description
Bedrock LLM
A Python library for building LLM applications using Amazon Bedrock Provider and boto3 library. It aims to create best practices and production-ready solutions for various LLM models, including Anthropic, Llama, Amazon Titan, MistralAI, and AI21.
The library is structured into two main components:
bedrock_be
: Infrastructure and services for deploying LLM applications.bedrock_llm
: LLM orchestration and interaction logic.
This structure allows for seamless integration of LLM capabilities with robust deployment and infrastructure management.
Features
- Support for multiple LLM models through Amazon Bedrock
- Efficient LLM orchestration with
bedrock_llm
- Infrastructure and deployment services with
bedrock_be
- Enhanced Agent-based interactions with:
- Robust tool validation and execution
- Comprehensive error handling and logging
- Configurable memory management
- Type-safe responses with
AgentResponse
- Support for multiple LLM tool-calling conventions (Claude, Llama, Mistral, etc.)
- Asynchronous and synchronous function support
- Performance monitoring and logging functionality
- Support for Retrieval-Augmented Generation (RAG)
- Multi-Agent systems (in progress)
- Workflows, nodes, and event-based systems (coming soon)
- Image generation, speech-to-text (STT), and text-to-speech (TTS) support (coming soon)
Installation
You can install the Bedrock LLM library using pip:
pip install bedrock-llm
This library requires Python 3.9 or later.
AWS Credentials Setup
Before using the library, make sure you have your AWS credentials properly configured:
-
Create or update your AWS credentials file at
~/.aws/credentials
:[bedrock] aws_access_key_id = YOUR_ACCESS_KEY aws_secret_access_key = YOUR_SECRET_KEY
-
Create or update your AWS config file at
~/.aws/config
:[profile bedrock] region = us-east-1
-
When initializing the client, specify the profile name:
from bedrock_llm import LLMClient, ModelName, ModelConfig # Create a LLM client with specific AWS profile client = LLMClient( region_name="us-east-1", model_name=ModelName.MISTRAL_7B, profile_name="bedrock" # Specify your AWS profile name )
You can verify your credentials by running:
aws bedrock list-foundation-models --profile bedrock
Usage
Here's a quick example of how to use the Bedrock LLM library:
Simple text generation
from bedrock_llm import LLMClient, ModelName, ModelConfig
# Create a LLM client
client = LLMClient(
region_name="us-east-1",
model_name=ModelName.MISTRAL_7B
)
# Create a configuration for inference parameters
config = ModelConfig(
temperature=0.1,
top_p=0.9,
max_tokens=512
)
# Create a prompt
prompt = "Who are you?"
# Invoke the model and get results
response, stop_reason = client.generate(config, prompt)
# Print out the results
cprint(response.content, "green")
cprint(stop_reason, "red")
Simple tool calling
from bedrock_llm import Agent, ModelName
from bedrock_llm.schema.tools import ToolMetadata, InputSchema, PropertyAttr
agent = Agent(
region_name="us-east-1",
model_name=ModelName.CLAUDE_3_5_HAIKU
)
# Define the tool description for the model
get_weather_tool = ToolMetadata(
name="get_weather",
description="Get the weather in specific location",
input_schema=InputSchema(
type="object",
properties={
"location": PropertyAttr(
type="string",
description="Location to search for, example: New York, WashingtonDC, ..."
)
},
required=["location"]
)
)
# Define the tool
@Agent.tool(get_weather_tool)
async def get_weather(location: str):
return f"{location} is 20*C"
async def main():
prompt = input("User: ")
async for token, stop_reason, response, tool_result in agent.generate_and_action_async(
prompt=prompt,
tools=["get_weather"]
):
if token:
print(token, end="", flush=True)
if stop_reason:
print(f"\n{stop_reason}")
if __name__ == "__main__":
import asyncio
asyncio.run(main())
Agent Features
The Agent class in bedrock_llm
provides powerful capabilities for building LLM-powered applications:
Tool Management
from bedrock_llm import Agent, ToolMetadata
from typing import Dict
# Define a tool with metadata
@Agent.tool(
metadata=ToolMetadata(
name="search",
description="Search for information",
input_schema={
"type": "object",
"properties": {
"query": {"type": "string", "description": "Search query"}
},
"required": ["query"]
}
)
)
async def search(query: str) -> Dict:
# Tool implementation
pass
Error Handling
The library provides comprehensive error handling with custom exceptions:
try:
result = await agent.generate_and_action_async(
prompt="Search for Python tutorials",
tools=["search"]
)
except ToolExecutionError as e:
print(f"Tool '{e.tool_name}' failed: {e.message}")
if e.original_error:
print(f"Original error: {e.original_error}")
Memory Management
Configure memory limits to manage conversation history:
agent = Agent(
region_name="us-west-2",
model_name=ModelName.ANTHROPIC_CLAUDE_V2,
memory_limit=100 # Keep last 100 messages
)
Type-Safe Responses
The library now provides type-safe responses using TypedDict:
async for response in agent.generate_and_action_async(...):
token: Optional[str] = response["token"]
stop_reason: Optional[StopReason] = response["stop_reason"]
message: Optional[MessageBlock] = response["message"]
tool_results: Optional[List] = response["tool_results"]
Tool States
Support for different LLM tool-calling conventions:
- Claude/Llama style: Uses ToolUseBlock for tool execution
- Mistral/Jamba style: Uses ToolCallBlock for function calling
Monitoring and Logging
Use the monitor
decorators for performance monitoring:
from bedrock_llm.monitor import Monitor
@Monitor.monitor_async
async def my_async_function():
# Your async function code here
@Monitor.monitor_sync
def my_sync_function():
# Your sync function code here
Use the log
decorators for logging function calls:
from bedrock_llm.monitor import Logging
@Logging.log_async
async def my_async_function():
# Your async function code here
@Logging.log_sync
def my_sync_function():
# Your sync function code here
These decorators are optimized for minimal performance impact on your application.
Architecture
For a detailed overview of the library's architecture, please see ARCHITECTURE.md.
Examples
For more detailed usage instructions and API documentation, please refer to our documentation.
You can also see some examples of how to use and build LLM flow using the libary
and more to come, we are working on it :)
Requirements
python>=3.9 pydantic>=2.0.0 boto3>=1.18.0 botocore>=1.21.0 jinja2>=3.1.2 psutil>=5.9.0 pytz>=2023.3 termcolor>=2.3.0 databases[postgresql]>=0.7.0 sqlalchemy>=2.0.0 asyncpg>=0.27.0 # PostgreSQL async driver types-redis>=4.6.0 types-pytz rx==3.2.0
Contributing
We welcome contributions! Please see our contributing guidelines for more details.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file bedrock_llm-0.1.6.tar.gz
.
File metadata
- Download URL: bedrock_llm-0.1.6.tar.gz
- Upload date:
- Size: 92.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8aea640e38ed705eb402f24fdfead3ec266ce68fb3d55600ac685e61128ec0c3 |
|
MD5 | 1dca81a7c6baa47446e6b4141cccc36d |
|
BLAKE2b-256 | b916584d73987c98d25ed629c6e2dae104536293bb00c333ac9df8064930eb35 |
File details
Details for the file bedrock_llm-0.1.6-py3-none-any.whl
.
File metadata
- Download URL: bedrock_llm-0.1.6-py3-none-any.whl
- Upload date:
- Size: 105.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 198ed902aa9f2d258c0267a21763575bfe122e594ae36205bb8e4fbf54bbda2d |
|
MD5 | 1bc953889def3729ccd92ec40c46667a |
|
BLAKE2b-256 | 825d1bb74fad7b02a7e124925ab47905481e545d84ec49111ac7420a0c7ce217 |