Skip to main content

Provides helper functions to help converting behave tables into pandas dataframes and vice versa.

Project description

behave-pandas

Utility package for the Behave BDD testing framework, to make converting gherkin tables to and from pandas data frames a breeze.

Build Status

Travis CI badge

Installation

pip install behave-pandas

Features

  • Easily convert a Gherkin table into a pandas data frame with explicit dtype information
  • Easily convert a pandas data frame into a behave table that can be parsed by behave-pandas
  • Support converting data frames with multiple index levels either on columns or rows
  • Handle missing data for dtypes that support it.

Changelog

See the changelog here.

API

The behave-pandas api is extremely simple, and consists in two functions:

from behave_pandas import table_to_dataframe, dataframe_to_table

Example

Feature: Table printer

  as a tester
  I want to be able to create gherkin tables from existing data frames

  Scenario: simple index
    Given a gherkin table as input
      | str       | float     | str                 |
      | index_col | float_col | str_col             |
      | egg       | 3.0       | silly walks         |
      | spam      | 4.1       | spanish inquisition |
      | bacon     | 5.2       | dead parrot         |
    When converted to a data frame using 1 row as column names and 1 column as index
    And printed using data_frame_to_table
    Then it prints a valid string copy pasteable into gherkin files
    """
    | object    | float64   | object              |
    | index_col | float_col | str_col             |
    | egg       | 3.0       | silly walks         |
    | spam      | 4.1       | spanish inquisition |
    | bacon     | 5.2       | dead parrot         |
    """

Associated steps:

from behave import *
from behave_pandas import table_to_dataframe, dataframe_to_table

use_step_matcher("parse")

@given("a gherkin table as input")
def step_impl(context,):
    context.input = context.table

@when('converted to a data frame using {column_levels:d} row as column names and {index_levels:d} column as index')
def step_impl(context, column_levels, index_levels):
    context.parsed = table_to_dataframe(context.input, column_levels=column_levels, index_levels=index_levels)


@then("it prints a valid string copy pasteable into gherkin files")
def step_impl(context):
    assert context.result == context.text


@step("printed using data_frame_to_table")
def step_impl(context):
    context.result = dataframe_to_table(context.parsed)

Parsed dataframe:

>>> context.parsed
           float_col              str_col
index_col
egg              3.0          silly walks
spam             4.1  spanish inquisition
bacon            5.2          dead parrot

>>> context.parsed.info()
<class 'pandas.core.frame.DataFrame'>
Index: 3 entries, egg to bacon
Data columns (total 2 columns):
float_col    3 non-null float64
str_col      3 non-null object
dtypes: float64(1), object(1)
memory usage: 72.0+ bytes

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

behave_pandas-0.5.0-py3-none-any.whl (6.7 kB view details)

Uploaded Python 3

File details

Details for the file behave_pandas-0.5.0-py3-none-any.whl.

File metadata

File hashes

Hashes for behave_pandas-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ff67906387e778e5f83c430e679d8b0709c53a6093b1ab551dc63e24795b0afb
MD5 cb799ff060cdb87a470bc3c28bd4d416
BLAKE2b-256 7a8148eeaf56a2176590d7ec925cae64505d797c0a0086411f7ab7d4b161e1b8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page