Skip to main content

An animal behaviour processing and analysis package

Project description

behavysis_pipeline

Documentation

Installation

Dev installation

conda env create -f conda_env.yaml
conda activate behavysis_pipeline_env
pip install poetry
poetry install

User installation

conda env create -f conda_env.yaml

References

Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., & Bethge, M. (2018, August 20). DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nature Neuroscience. Springer Science and Business Media LLC. http://doi.org/10.1038/s41593-018-0209-y

Nath, T., Mathis, A., Chen, A. C., Patel, A., Bethge, M., & Mathis, M. W. (2019, June 21). Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nature Protocols. Springer Science and Business Media LLC. http://doi.org/10.1038/s41596-019-0176-0

Lauer, J., Zhou, M., Ye, S., Menegas, W., Schneider, S., Nath, T., … Mathis, A. (2022, April). Multi-animal pose estimation, identification and tracking with DeepLabCut. Nature Methods. Springer Science and Business Media LLC. http://doi.org/10.1038/s41592-022-01443-0

Nilsson, S., Goodwin, N., Choong, J. J., Hwang, S., Wright, H., Norville, Z., Tong, X., Lin, D., Bentzley, B., Eshel, N., McLaughlin, R., & Golden, S. Simple Behavioral Analysis (SimBA): an open source toolkit for computer classification of complex social behaviors in experimental animals [Computer software]. https://github.com/sgoldenlab/simba

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

behavysis_pipeline-0.1.24.tar.gz (65.9 kB view details)

Uploaded Source

Built Distribution

behavysis_pipeline-0.1.24-py3-none-any.whl (84.4 kB view details)

Uploaded Python 3

File details

Details for the file behavysis_pipeline-0.1.24.tar.gz.

File metadata

  • Download URL: behavysis_pipeline-0.1.24.tar.gz
  • Upload date:
  • Size: 65.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.12.7 Darwin/23.6.0

File hashes

Hashes for behavysis_pipeline-0.1.24.tar.gz
Algorithm Hash digest
SHA256 c4de3bbde897f2c3c52b741939cbda346606d3bb2f5d93a2ae48f5aaf29f10e8
MD5 6082ab15f48ec2d70aafe04fa8c1b519
BLAKE2b-256 3965662bc2722b68857e6a4b2fe1baab78499f58421f34f6b909705e68d6fa3a

See more details on using hashes here.

File details

Details for the file behavysis_pipeline-0.1.24-py3-none-any.whl.

File metadata

File hashes

Hashes for behavysis_pipeline-0.1.24-py3-none-any.whl
Algorithm Hash digest
SHA256 80001c9d56b7845eb1e9804f131042f397efe222d821449a0d816a2ec16801d9
MD5 6060bc7853a8ce9cb93d175792fd83a7
BLAKE2b-256 2983dc5f19b23c49ccea043ae164367894d635adbb4d4ae547ee941c657e1333

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page