Skip to main content

A semi-automated behaviour verification, processing and analysis package.

Project description

behavysis_viewer

Semi-automated scoring animal behaviour. Behaviour is first predicted by a classifier and then the user verifies & further scores this behaviour.

Installation

Dev installation

conda env create -f conda_env.yaml
conda activate behavysis_viewer_env
pip install poetry
poetry install

User installation

conda env create -f conda_env.yaml

Running

behavysis_viewer
pyside6-uic behavysis_viewer/ui/main_ui.ui -o behavysis_viewer/ui/main_ui.py

pyside6-uic behavysis_viewer/ui/settings_ui.ui -o behavysis_viewer/ui/settings_ui.py

References

Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., & Bethge, M. (2018, August 20). DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nature Neuroscience. Springer Science and Business Media LLC. http://doi.org/10.1038/s41593-018-0209-y

Nath, T., Mathis, A., Chen, A. C., Patel, A., Bethge, M., & Mathis, M. W. (2019, June 21). Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nature Protocols. Springer Science and Business Media LLC. http://doi.org/10.1038/s41596-019-0176-0

Lauer, J., Zhou, M., Ye, S., Menegas, W., Schneider, S., Nath, T., … Mathis, A. (2022, April). Multi-animal pose estimation, identification and tracking with DeepLabCut. Nature Methods. Springer Science and Business Media LLC. http://doi.org/10.1038/s41592-022-01443-0

Nilsson, S., Goodwin, N., Choong, J. J., Hwang, S., Wright, H., Norville, Z., Tong, X., Lin, D., Bentzley, B., Eshel, N., McLaughlin, R., & Golden, S. Simple Behavioral Analysis (SimBA): an open source toolkit for computer classification of complex social behaviors in experimental animals [Computer software]. https://github.com/sgoldenlab/simba

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

behavysis_viewer-0.1.23.tar.gz (34.8 kB view details)

Uploaded Source

Built Distribution

behavysis_viewer-0.1.23-py3-none-any.whl (42.0 kB view details)

Uploaded Python 3

File details

Details for the file behavysis_viewer-0.1.23.tar.gz.

File metadata

  • Download URL: behavysis_viewer-0.1.23.tar.gz
  • Upload date:
  • Size: 34.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.12.7 Darwin/23.6.0

File hashes

Hashes for behavysis_viewer-0.1.23.tar.gz
Algorithm Hash digest
SHA256 6e3afa70c0df54a1e1f406b6a95e409caadfe142d93b23795751df55c6778ca6
MD5 6e68369f24ce1d471e3e6dadce470f34
BLAKE2b-256 4322ba16cf6e0289fcc7084f5c1f0d9f14ad1aeae65f26cef2fb44cb15e71c35

See more details on using hashes here.

File details

Details for the file behavysis_viewer-0.1.23-py3-none-any.whl.

File metadata

File hashes

Hashes for behavysis_viewer-0.1.23-py3-none-any.whl
Algorithm Hash digest
SHA256 0d80480b97463c5d809eb38c4a942188716295da480e809ca73c055247e9786a
MD5 3df35a16218d8623f84dda4e6878c355
BLAKE2b-256 f70c0d4dbc22345b4072825b9ec4d787980d959a5cd83774fffb1312f72bb3f5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page