Belief propagation on Tanner graphs. Implements an LLR based LDPC decoder.
Project description
Belief Propagation
This repo is aimed at providing an example implementation of belief propagation on Tanner graphs as used by a standard LDPC decoder.
You can also view my associated Medium post.
If you see bug, wish suggest something or contribute please open an issue. Alternatively you can also contact me via email.
For more information on LDPC codes and belief propagation on Tanner graphs visit my GitHub pages site: https://yairmz.github.io/LDPC/.
Installation
pip install belief-propagation-ldpc
API
Nodes
One can create nodes (either variable or check nodes) via:
from belief_propagation import VNode, CNode, bsc_llr
v = VNode(name="v0", channel_model=bsc_llr(0.1))
c = CNode(name="c0")
Graphs
Creating a graph:
from belief_propagation import TannerGraph, bsc_llr
import numpy as np
tg = TannerGraph()
# add 10 variable nodes
for i in range(10):
tg.add_v_node(name="v"+str(i), channel_model=bsc_llr(0.1), ordering_key=i)
# add 5 check nodes
for j in range(5):
tg.add_c_node(name="c"+str(j), ordering_key=j)
edges = {("v0", "c0"), ("v0", "c1"), ("v1", "c0"), ("v1", "c2"), ("v2", "c0"), ("v2", "c3"), ("v3", "c0"), ("v3", "c4"),
("v4", "c1"), ("v4", "c2"), ("v5", "c1"), ("v5", "c3"), ("v6", "c1"), ("v6", "c4"), ("v7", "c2"), ("v7", "c3"),
("v8", "c2"), ("v8", "c4"), ("v9", "c3"), ("v9", "c4")}
tg.add_edges_by_name(edges)
# Alternatively given a biadjacency matrix (parity check matrix) a graph can be constructed from it
H = np.array([[1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 1, 0, 0, 1, 0, 0, 1, 1, 0],
[0, 0, 1, 0, 0, 1, 0, 1, 0, 1],
[0, 0, 0, 1, 0, 0, 1, 0, 1, 1]])
tg = TannerGraph.from_biadjacency_matrix(H, channel_model=bsc_llr(0.1))
A graph may also be converted into a NetworkX Graph object. It can then be easily plotted using NetworkX Draw, or PyVis.
from belief_propagation import TannerGraph, bsc_llr
import numpy as np
H = np.array([[1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 1, 0, 0, 1, 0, 0, 1, 1, 0],
[0, 0, 1, 0, 0, 1, 0, 1, 0, 1],
[0, 0, 0, 1, 0, 0, 1, 0, 1, 1]])
tg = TannerGraph.from_biadjacency_matrix(H, channel_model=bsc_llr(0.1))
g = tg.to_nx()
import networkx as nx
import matplotlib.pyplot as plt
fig = plt.figure()
top = nx.bipartite.sets(g)[0]
labels = {node: d["label"] for node,d in g.nodes(data=True)}
nx.draw_networkx(g,
with_labels=True,
node_color=[d["color"] for d in g.nodes.values()],
pos=nx.bipartite_layout(g, top),
labels=labels)
fig.show()
Belief Propagation
from belief_propagation import BeliefPropagation, TannerGraph, bsc_llr
import numpy as np
# consider a parity check matrix
H = np.array([[1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 1, 0, 0, 1, 0, 0, 1, 1, 0],
[0, 0, 1, 0, 0, 1, 0, 1, 0, 1],
[0, 0, 0, 1, 0, 0, 1, 0, 1, 1]])
# Use it to construct a Tanner graph. Assume a BSC channel model with probability p=0.1 ofr bit flip
model = bsc_llr(0.1)
tg = TannerGraph.from_biadjacency_matrix(H, channel_model=model)
# let us assume the codeword [1,1,0,0,1,0,0,0,0,0] was sent, but due to a channel error the last bit got flipped
c = np.array([1, 1, 0, 0, 1, 0, 0, 0, 0, 1])
# consequently we get initially H.dot(c) % 2
# array([0, 0, 0, 1, 1])
# let us try to correct the error
bp = BeliefPropagation(tg, H, max_iter=10)
estimate, llr, decode_success = bp.decode(c)
# You can see that the error is corrected
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file belief-propagation-ldpc-1.0.1.tar.gz
.
File metadata
- Download URL: belief-propagation-ldpc-1.0.1.tar.gz
- Upload date:
- Size: 7.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d2d3e4bed206fb1210996b272c9af2eb1c4b7027cc3912f7e1960daf87c65daa |
|
MD5 | 9643b1aed43a7701459dc338cbc6bed4 |
|
BLAKE2b-256 | 0eb517594c0d6735969b33ec754904d98390cee30ea0accf803e3d3358a2426e |
File details
Details for the file belief_propagation_ldpc-1.0.1-py3-none-any.whl
.
File metadata
- Download URL: belief_propagation_ldpc-1.0.1-py3-none-any.whl
- Upload date:
- Size: 8.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 01f09eef38d26a5ee9a24e5fed1f678d155b575c808e45aa18f360088489936d |
|
MD5 | e20c696ecc0e19b7da203410b63fae54 |
|
BLAKE2b-256 | 4c1508f7476902da5a2744a7bfea04af228bb0ef6ba511e871a5291921adfc5f |