Random forest for exoplanets
Project description
BEM : beyond the exoplanet mass-radius relation with random forest
Predicting the radius of exoplanets based on its planetary and stellar parameters
Branca Edmée Marques
A portuguese scientist who worked on nuclear physics in France with Marie Curie
To install bem
pip install bem
or
git clone https://github.com/soleneulmer/bem.git
cd bem
python setup.py install
A simple decision tree
to predict exoplanet radius
How to run bem:
1. Load dataset and model
# Load exoplanet and solar system planets dataset
dataset = bem.load_dataset()
# Plot the dataset radius as a function of mass and equilibrium temperature
bem.plot_dataset(dataset)
# Build the random forest model and predict radius of the dataset
regr, y_test_predict, _, train_test_sets = bem.random_forest_regression(dataset)
2. Predict the radius of your planet
my_planet = [planetary_mass, semi major axis, eccentricity, stellar radius, stellar effective temperature, stellar mass]
or with error bars
my_planet = [planetary_mass, error, semi major axis, error eccentricity, error, stellar radius, error, stellar effective temperature, error, stellar mass, error]
# Predict a new radius
radius, my_pred_planet = bem.predict_radius(my_planet=np.array([[1.63,
0.034,
0.02,
0.337,
3505.0,
0.342]]),
my_name=np.array(['GJ 357 b']),
regr=regr,
jupiter_mass=False,
error_bar=False)
# If error_bar is True
# print('Radius: ', radius[0][0], '+-', radius[1])
3. Compute error bars for the radius predictions
# Load exoplanet and solar system planets dataset with uncertainties
dataset_errors = bem.load_dataset_errors()
# Compute the error bars for the test set planets
radii_test_output_error, _ = bem.computing_errorbars(regr,
dataset_errors,
train_test_sets)
# Plot the test set, true radius versus RF predicted radius
bem.plot_true_predicted(train_test_sets,
y_test_predict,
radii_test_output_error)
4. Radial velocity dataset
# Load the radial velocity dataset
dataset_rv = bem.load_dataset_RV()
# Predict the radius of the RV dataset
radii_RV_RF = regr.predict(dataset_rv)
# Plot the predictions of the RV dataset
bem.plot_dataset(dataset_rv, predicted_radii=radii_RV_RF, rv=True)
5. Diagnostic plots
# Plot the learning curve
bem.plot_learning_curve(regr, dataset)
# Plot the validation curves
bem.plot_validation_curves(regr, dataset, name='features')
bem.plot_validation_curves(regr, dataset, name='tree')
bem.plot_validation_curves(regr, dataset, name='depth')
6. LIME explanations
see their github
# Explain the RF predictions
# of the exoplanets from the test set
bem.plot_LIME_predictions(regr, dataset, train_test_sets)
# LIME explanation for your planet
# in this case GJ 357 b
bem.plot_LIME_predictions(regr, dataset, train_test_sets,
my_pred_planet=my_pred_planet,
my_true_radius=1.166)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
bem-1.0.0.tar.gz
(743.9 kB
view details)
File details
Details for the file bem-1.0.0.tar.gz
.
File metadata
- Download URL: bem-1.0.0.tar.gz
- Upload date:
- Size: 743.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d0abed772e2ecde8b61f0dc34440d14a173f3384de9f9b3ced793d9380ae091a |
|
MD5 | c5fbecf55c002e63df4b7fe0b6f04197 |
|
BLAKE2b-256 | b741705e8f79cc54c62d37a2520f63fdc2ccc5944bd6da0c80d94b23f72e7628 |