Skip to main content

Benchmark resources usage

Project description

Monitor Process Resources Usage

Bench aims to be a handy tool with these functions:
- Monitor CPU time (user time, system time, real time)
- Monitor memory usage (virtual memory usage, resident memory usage)
- Output to TSV(tab-delimited files)
- Output benchmark metrics
- Visualize performance metrics (memory consumptions) over time

Examples

We showed several examples below. Please note that all output are tabularized for demonstration purpose.

  • Example 1: simple command.

This will start the process sleep for 2 seconds. The tabular output below was from the actual command: monitor.py sleep 2 2>&1 |column -t -s $'\t'.
If you simply run monitor.py sleep 2, you will get tab-deliminated outputs in standard error (stderr).
$> monitor.py sleep 2
pid     ppid    utime  stime  rtime         rss     vms      maxRss  maxVms   avgRss    avgVms     cwd                                cmd
133692  133675  0.0    0.0    1.9368159771  774144  6066176  774144  6066176  774144.0  6066176.0  /home/zhanxw/mycode/bench/scripts  sleep 2
  • Example 2: complex shell commands with sampling interval equaling to 0.1 second

This example will use shell to start 3 processes: sleep 2, sleep 4 and seq 1000000. You can see bench can monitor all 4 processes all together.

$> monitor.py sh -c 'sleep 2 & sleep 4 & seq 1000000 >/dev/null & wait'
pid     ppid    utime  stime  rtime            rss     vms      maxRss  maxVms   avgRss    avgVms     cwd                                cmd
135004  134985  0.0    0.0    3.9532430172     798720  4558848  798720  4558848  798720.0  4558848.0  /home/zhanxw/mycode/bench/scripts  sh -c sleep 2 & sleep 4 & seq 10000000 >/dev/null & wait
135006  135004  0.0    0.0    3.95348381996    655360  6066176  655360  6066176  655360.0  6066176.0  /home/zhanxw/mycode/bench/scripts  sleep 4
135005  135004  0.0    0.0    1.83160495758    774144  6066176  774144  6066176  774144.0  6066176.0  /home/zhanxw/mycode/bench/scripts  sleep 2
135007  135004  0.05   0.0    0.0599648952484  720896  6090752  720896  6090752  720896.0  6090752.0  /home/zhanxw/mycode/bench/scripts  seq 10000000
  • Example 3: generate performance metrics to external file

Here we used a small program, burnCpu. It will keep CPU running for several seconds. Its source code is under src/.

The option -t will enable outputting traces. That means at several time stops, performance metrics of each processes will be outputted to the standard error as well as a separate comma-separated file, $prefix.trace.csv.

The option -g will generate a graph which contains several sub-figures, including timings for each processes, memory consumption for each processes, and memory consumption over the processing running time.

The option -o will specify the output prefix. The default value will be bench, meaning, you will get bench.csv. You can overwrite this value by using -o option.

$> monitor.py -t -g -o burnCpu ./burnCpu
pid     ppid    utime  stime  rtime            rss      vms       cwd                                cmd
135471  135454  0.04   0.0    0.0441780090332  1449984  12984320  /home/zhanxw/mycode/bench/scripts  ../src/burnCpu
135471  135454  0.2    0.0    0.205282926559   1449984  12984320  /home/zhanxw/mycode/bench/scripts  ../src/burnCpu
135471  135454  0.38   0.0    0.381079912186   1449984  12984320  /home/zhanxw/mycode/bench/scripts  ../src/burnCpu
...

Additional result are stored in burnCpu.csv, burnCpu.trace.csv in the Comma-separated format (CSV).

burnCpu.csv file content

pid,ppid,utime,stime,rtime,rss,vms,maxRss,maxVms,avgRss,avgVms,cwd,cmd
144433,144416,5.4,0.0,5.40555810928,1404928,12984320,1404928,12984320,1404928.0,12984320.0,/home/zhanxw/mycode/bench/scripts,../src/burnCpu

burnCpu.trace.csv file content

pid,ppid,utime,stime,rtime,rss,vms,cwd,cmd
144433,144416,0.03,0.0,0.0423669815063,1404928,12984320,/home/zhanxw/mycode/bench/scripts,../src/burnCpu
144433,144416,0.19,0.0,0.20046210289,1404928,12984320,/home/zhanxw/mycode/bench/scripts,../src/burnCpu
144433,144416,0.36,0.0,0.373480081558,1404928,12984320,/home/zhanxw/mycode/bench/scripts,../src/burnCpu
...

When -g optioned is specified, bench will generate several performance metrics in the file burnCpu.trace.csv:

image

Notes

To benchmark a complex command or combinations of commands, you can use shell (sh or bash) . For example, you can use “sh -c ‘command arg1 arg2 … ‘” (see Example 2).
Bench requires psutil to collect basic performance metrics, and
requires numpy and pandas for statistical calculations.
In this release, we used psutil 3.1.1, numpy 1.8.2, pandas 0.16.2 and matplotlib 1.4.3.

Contact

For questions or commend, please visit bench github repo:
or email to:
Xiaowei Zhan

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bench-2.8.tar.gz (6.3 kB view details)

Uploaded Source

File details

Details for the file bench-2.8.tar.gz.

File metadata

  • Download URL: bench-2.8.tar.gz
  • Upload date:
  • Size: 6.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for bench-2.8.tar.gz
Algorithm Hash digest
SHA256 c0c7641227a4edf57be9fc9801656019131b5450fa262c77b3af11d443c09cbc
MD5 fa1b0f86b3ee9c8fe7556964676911eb
BLAKE2b-256 f4bd0283ce34822f314db788236358c9d22bf29602d3e3db3576175c4524ab37

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page