Skip to main content

Benchmark functions that returns total space, mem, cpu given input size and parameters for the CWL workflows

Project description

The repo contains a benchmarking script for some of the CWL workflows used by 4DN-DCIC (https://github.com/4dn-dcic/pipelines-cwl), that returns total space, mem and CPUs required per given input size and a recommended AWS EC2 instance type.

Example usage of benchmarking script

  • importing the module
from Benchmark import run as B
  • md5
app_name = 'md5'
input_json = {'input_size_in_bytes': {'input_file': 20000}}
B.benchmark(app_name, input_json)
{'aws': {'recommended_instance_type': 't2.xlarge', 'EBS_optimized': False, 'cost_in_usd': 0.188, 'EBS_optimization_surcharge': None, 'mem_in_gb': 16.0, 'cpu': 4}, 'total_size_in_GB': 14.855186462402344, 'total_mem_in_MB': 13142.84375, 'min_CPU': 4}
  • fastqc-0-11-4-1
app_name = 'fastqc-0-11-4-1'
input_json = {'input_size_in_bytes': {'input_fastq':20000},
              'parameters': {'threads': 2}}
B.benchmark(app_name, input_json)
{'recommended_instance_type': 't2.nano', 'EBS_optimized': False, 'cost_in_usd': 0.006, 'EBS_optimization_surcharge': None, 'mem_in_gb': 0.5, 'cpu': 1}
  • bwa-mem
app_name = 'bwa-mem'
input_json = {'input_size_in_bytes': {'fastq1':93520000,
                                      'fastq2':97604000,
                                      'bwa_index':3364568000},
              'parameters': {'nThreads': 4}}
B.benchmark(app_name, input_json)
{'aws': {'cost_in_usd': 0.188, 'EBS_optimization_surcharge': None, 'EBS_optimized': False, 'cpu': 4, 'mem_in_gb': 16.0, 'recommended_instance_type': 't2.xlarge'}, 'total_mem_in_MB': 12834.808349609375, 'total_size_in_GB': 15.502477258443832, 'min_CPU': 4}

To use Benchmark in from other places, install it as below.

pip install Benchmark-4dn

or

pip install git+git://github.com/SooLee/Benchmark.git

Note: From 0.5.3 we have a new function that takes in cpu and memory and returns a sorted list of instance dictionaries.

get_instance_types(cpu=1, mem_in_gb=0.5, instances=instance_list(), top=10, rank='cost_in_usd')

Keys in each instance dictionary:

'cost_in_usd', 'mem_in_gb', 'cpu', 'instance_type', 'EBS_optimized', 'EBS_optimization_surcharge'

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

benchmark_4dn-0.5.25.tar.gz (31.4 kB view details)

Uploaded Source

Built Distribution

benchmark_4dn-0.5.25-py3-none-any.whl (31.8 kB view details)

Uploaded Python 3

File details

Details for the file benchmark_4dn-0.5.25.tar.gz.

File metadata

  • Download URL: benchmark_4dn-0.5.25.tar.gz
  • Upload date:
  • Size: 31.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.7.2 Darwin/23.6.0

File hashes

Hashes for benchmark_4dn-0.5.25.tar.gz
Algorithm Hash digest
SHA256 b3862e927bf6d49989c4b0412b28835fb9b2fcadd7678bb3ebb8f38c762297bd
MD5 ffea116ffa8ec815a4345e3b7522bbec
BLAKE2b-256 1419adcf8335af351da6c1c68667082a7b42308ec8fc7c720ff825c9e22cab18

See more details on using hashes here.

File details

Details for the file benchmark_4dn-0.5.25-py3-none-any.whl.

File metadata

  • Download URL: benchmark_4dn-0.5.25-py3-none-any.whl
  • Upload date:
  • Size: 31.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.7.2 Darwin/23.6.0

File hashes

Hashes for benchmark_4dn-0.5.25-py3-none-any.whl
Algorithm Hash digest
SHA256 5bbe0d4e3f170fdbe180289329624378d4c85f7e0525cade4452912ce1f055f3
MD5 d6b85c30125f266eb483fb532b4e498b
BLAKE2b-256 18f04f304ee1cbd707427704072644709743151a213a54e89075efa80a1af035

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page