Skip to main content

Advanced benchmarking for machine learning models.

Project description

Benchmark-Adv-ML

Benchmark-Adv-ML is a Python package designed to facilitate advanced benchmarking and analysis of machine learning models. It provides comprehensive pipelines for model stability evaluation, autoencoder training, and survival clustering analysis, enabling users to evaluate model performance, generate predictions, and visualize results through various plots, including AUC curves, feature importance charts, and Kaplan-Meier survival plots.

Table of Contents

Features

  • Model Stability Evaluation: Automatically runs multiple machine learning models (Logistic Regression, Support Vector Classifier, Random Forest Classifier) across multiple runs to assess stability and performance.
  • Autoencoder Training: Implements an autoencoder for dimensionality reduction and feature extraction, customizable with various hyperparameters.
  • Survival Clustering Analysis: Performs clustering on patient features and integrates clinical data to generate Kaplan-Meier survival plots and log-rank tests.
  • Prediction and Metrics Generation: Generates and saves predictions, feature importance scores, and various performance metrics for each model and run.
  • Aggregation of Results: Aggregates results across runs and models for comprehensive analysis, facilitating comparison and evaluation.
  • Visualization Tools: Generates plots including AUC curves, AUC box plots, feature importance charts, radar charts for model performance comparison, and survival analysis plots.

Installation

You can install the package directly from PyPI:

pip install benchmark-adv-ml

Alternatively, install from source:

git clone https://github.com/yourusername/benchmark-adv-ml.git
cd benchmark-adv-ml
pip install .

Useage

The package provides a command-line interface (CLI) for ease of use. Below are examples of how to use each component.

Benchmark Machine Learning Models

Run the benchmark ML pipeline to evaluate model stability across multiple runs.

benchmark-adv-ml benchmark --data ./your_dataset.csv --output ./final_results --prelim_output ./prelim_results --n_runs 10 --seed 42

Train Autoencoder Model

Train and evaluate an autoencoder model for feature extraction.

benchmark-adv-ml autoencoder --data ./your_dataset.csv --sampleID 'PatientID' --output_dir ./final_results --prelim_output ./prelim_results --latent_dim 10 --epochs 50 --batch_size 32 --validation_split 0.1 --test_size 0.2 --seed 42

Survival Clustering Analysis

benchmark-adv-ml survival_clustering --data_path ./latent_features.csv --clinical_df_path ./clinical_data.csv --save_dir ./final_results

Command-Line Arguments

Common Arguments

  • --data: Path to the existing CSV file containing the dataset.
  • --output: Directory to save the final results and plots.
  • --prelim_output: Directory to save the preliminary results (predictions).
  • --seed: Seed for random state (default is 42).

Benchmark Command Arguments

  • --target: Target column name in the dataset (default: 'label').
  • --n_runs: Number of runs for model stability evaluation (default: 20).

Autoencoder Command Arguments

  • --sampleID: Column name representing the sample or patient ID (default: 'sampleID').
  • --latent_dim: Dimensionality of the latent space (default: input_dim // 8).
  • --epochs: Number of training epochs (default: 50).
  • --batch_size: Training batch size (default: 32).
  • --validation_split: Proportion of training data to use as validation set (default: 0.1).
  • --test_size: Proportion of data to use as test set (default: 0.2).
  • --early_stopping: Enable early stopping (use flag to activate).
  • --patience: Patience for early stopping (default: 5).
  • --checkpoint: Enable model checkpointing (use flag to activate).

Survival Clustering Command Arguments

  • --data_path: Path to the CSV file containing patient features.
  • --clinical_df_path: Path to the CSV file containing clinical data.
  • --save_dir: Directory to save the results.

Dependencies

  • Python 3.11+
  • numpy
  • pandas
  • scikit-learn
  • matplotlib
  • seaborn
  • tensorflow
  • lifelines
  • yellowbrick

License

This project is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. See the LICENSE file for details.

Author

Vatsal Patel - VatsalPatel18

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

benchmark_adv_ml-0.2.6.tar.gz (80.0 kB view details)

Uploaded Source

Built Distribution

benchmark_adv_ml-0.2.6-py3-none-any.whl (89.0 kB view details)

Uploaded Python 3

File details

Details for the file benchmark_adv_ml-0.2.6.tar.gz.

File metadata

  • Download URL: benchmark_adv_ml-0.2.6.tar.gz
  • Upload date:
  • Size: 80.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.7 Linux/6.8.0-45-generic

File hashes

Hashes for benchmark_adv_ml-0.2.6.tar.gz
Algorithm Hash digest
SHA256 0840899dcbe5bb4db51a675908bfc8234e379e34d18c37c5b1ffb5bc2eb63013
MD5 0b862c59a19ad6df2e27b38743a837a1
BLAKE2b-256 2db710f48d8d75adb54d130c0ace3fe1fdba934dce46b759ddcd3d229b22f176

See more details on using hashes here.

File details

Details for the file benchmark_adv_ml-0.2.6-py3-none-any.whl.

File metadata

  • Download URL: benchmark_adv_ml-0.2.6-py3-none-any.whl
  • Upload date:
  • Size: 89.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.7 Linux/6.8.0-45-generic

File hashes

Hashes for benchmark_adv_ml-0.2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 97d1e689dc72558010b7a1ea34dd70bcb7beb92eb68a3a67c2d1e6298692872a
MD5 03266cc027a831a0ae72ff192503d4b4
BLAKE2b-256 92b8306a63fd16ac772be419bc8277e8eac8cf5e1a3604d1b3014c9887c83714

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page