Skip to main content

Benchmark Runner Tool

Project description



Benchmark-Runner: Running benchmarks

Actions Status PyPI Latest Release Container Repository on Quay Coverage Status Documentation Status python License

What is it?

benchmark-runner is a containerized Python lightweight and flexible framework for running benchmark workloads on Kubernetes/OpenShift runtype kinds Pod, kata and VM.

This framework support the following embedded workloads:

** For hammerdb mssql must run once permission

Benchmark-runner grafana dashboard example:

Reference:

  • The benchmark-runner package is located in PyPi
  • The benchmark-runner container image is located in Quay.io

Documentation

Documentation is available at benchmark-runner.readthedocs.io

Table of Contents

Run workload using Podman or Docker

The following options may be passed via command line flags or set in the environment:

mandatory: KUBEADMIN_PASSWORD=$KUBEADMIN_PASSWORD

mandatory: $KUBECONFIG [ kubeconfig file path]

mandatory: WORKLOAD=$WORKLOAD

Choose one from the following list:

['stressng_pod', 'stressng_vm', 'stressng_kata', 'uperf_pod', 'uperf_vm', 'uperf_kata', 'hammerdb_pod_mariadb', 'hammerdb_vm_mariadb', 'hammerdb_kata_mariadb', 'hammerdb_pod_mariadb_lso', 'hammerdb_vm_mariadb_lso', 'hammerdb_kata_mariadb_lso', 'hammerdb_pod_postgres', 'hammerdb_vm_postgres', 'hammerdb_kata_postgres', 'hammerdb_pod_postgres_lso', 'hammerdb_vm_postgres_lso', 'hammerdb_kata_postgres_lso', 'hammerdb_pod_mssql', 'hammerdb_vm_mssql', 'hammerdb_kata_mssql', 'hammerdb_pod_mssql_lso', 'hammerdb_vm_mssql_lso', 'hammerdb_kata_mssql_lso', 'vdbench_pod', 'vdbench_kata', 'vdbench_vm', 'clusterbuster', 'bootstorm_vm']

** clusterbuster workloads: cpusoaker, files, fio, uperf. for more details see

Not mandatory:

auto: NAMESPACE=benchmark-operator [ The default namespace is benchmark-operator ]

auto: ODF_PVC=True [ True=ODF PVC storage, False=Ephemeral storage, default True ]

auto: EXTRACT_PROMETHEUS_SNAPSHOT=True [ True=extract Prometheus snapshot into artifacts, false=don't, default True ]

auto: SYSTEM_METRICS=False [ True=collect metric, False=not collect metrics, default False ]

auto: RUNNER_PATH=/tmp [ The default work space is /tmp ]

optional: PIN_NODE_BENCHMARK_OPERATOR=$PIN_NODE_BENCHMARK_OPERATOR [node selector for benchmark operator pod]

optional: PIN_NODE1=$PIN_NODE1 [node1 selector for running the workload]

optional: PIN_NODE2=$PIN_NODE2 [node2 selector for running the workload, i.e. uperf server and client, hammerdb database and workload]

optional: ELASTICSEARCH=$ELASTICSEARCH [ elasticsearch service name]

optional: ELASTICSEARCH_PORT=$ELASTICSEARCH_PORT

optional: CLUSTER=$CLUSTER [ set CLUSTER='kubernetes' to run workload on a kubernetes cluster, default 'openshift' ]

optional:scale SCALE=$SCALE [For Vdbench/Bootstorm: Scale in each node]

optional:scale SCALE_NODES=$SCALE_NODES [For Vdbench/Bootstorm: Scale's node]

optional:scale REDIS=$REDIS [For Vdbench only: redis for scale synchronization]

optional: LSO_DISK_ID=$LSO_DISK_ID [LSO_DISK_ID='scsi-<replace_this_with_your_actual_disk_id>' For using LSO Operator in hammerdb]

optional: WORKER_DISK_IDS=$WORKER_DISK_IDS [WORKER_DISK_IDS For ODF/LSO workloads hammerdb/vdbench]

For example:

podman run --rm -e WORKLOAD="hammerdb_pod_mariadb" -e KUBEADMIN_PASSWORD="1234" -e PIN_NODE_BENCHMARK_OPERATOR="node_name-0" -e PIN_NODE1="node_name-1" -e PIN_NODE2="node_name-2" -e log_level=INFO -v /root/.kube/config:/root/.kube/config --privileged quay.io/benchmark-runner/benchmark-runner:latest

or

docker run --rm -e WORKLOAD="hammerdb_vm_mariadb" -e KUBEADMIN_PASSWORD="1234" -e PIN_NODE_BENCHMARK_OPERATOR="node_name-0" -e PIN_NODE1="node_name-1" -e PIN_NODE2="node_name-2" -e log_level=INFO -v /root/.kube/config:/root/.kube/config --privileged quay.io/benchmark-runner/benchmark-runner:latest

SAVE RUN ARTIFACTS LOCAL:

  1. add -e SAVE_ARTIFACTS_LOCAL='True' or --save-artifacts-local=true
  2. add -v /tmp:/tmp
  3. git clone -b v1.0.3 https://github.com/cloud-bulldozer/benchmark-operator /tmp/benchmark-operator

Run vdbench workload in Pod using OpenShift

Run vdbench workload in Pod using Kubernetes

Run workload in Pod using Kubernetes or OpenShift

[TBD]

Grafana dashboards

There are 2 grafana dashboards templates:

  1. FuncCi dashboard
  2. PerfCi dashboard ** PerfCi dashboard is generated automatically in Build GitHub actions from main.libsonnet

** After importing json in grafana, you need to configure elasticsearch data source. (for more details: see HOW_TO.md)

Inspect Prometheus Metrics

The CI jobs store snapshots of the Prometheus database for each run as part of the artifacts. Within the artifact directory is a Prometheus snapshot directory named:

promdb-YYYY_MM_DDTHH_mm_ss+0000_YYYY_MM_DDTHH_mm_ss+0000.tar

The timestamps are for the start and end of the metrics capture; they are stored in UTC time (+0000). It is possible to run containerized Prometheus on it to inspect the metrics. Note that Prometheus requires write access to its database, so it will actually write to the snapshot. So for example if you have downloaded artifacts for a run named hammerdb-vm-mariadb-2022-01-04-08-21-23 and the Prometheus snapshot within is named promdb_2022_01_04T08_21_52+0000_2022_01_04T08_45_47+0000, you could run as follows:

$ local_prometheus_snapshot=/hammerdb-vm-mariadb-2022-01-04-08-21-23/promdb_2022_01_04T08_21_52+0000_2022_01_04T08_45_47+0000
$ chmod -R g-s,a+rw "$local_prometheus_snapshot"
$ sudo podman run --rm -p 9090:9090 -uroot -v "$local_prometheus_snapshot:/prometheus" --privileged prom/prometheus --config.file=/etc/prometheus/prometheus.yml --storage.tsdb.path=/prometheus --storage.tsdb.retention.time=100000d --storage.tsdb.retention.size=1000PB

and point your browser at port 9090 on your local system, you can run queries against it, e.g.

sum(irate(node_cpu_seconds_total[2m])) by (mode,instance) > 0

It is important to use the --storage.tsdb.retention.time option to Prometheus, as otherwise Prometheus may discard the data in the snapshot. And note that you must set the time bounds on the Prometheus query to fit the start and end times as recorded in the name of the promdb snapshot.

How to develop in benchmark-runner

see HOW_TO.md

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

benchmark_runner-1.0.688.tar.gz (144.5 kB view details)

Uploaded Source

Built Distribution

benchmark_runner-1.0.688-py3-none-any.whl (208.3 kB view details)

Uploaded Python 3

File details

Details for the file benchmark_runner-1.0.688.tar.gz.

File metadata

  • Download URL: benchmark_runner-1.0.688.tar.gz
  • Upload date:
  • Size: 144.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for benchmark_runner-1.0.688.tar.gz
Algorithm Hash digest
SHA256 c7a42f37e9b73ef718862d80ba409a7eda84bde5676c5878779e39c95c83fb0c
MD5 52f7295e4c3966b49972db2fa98b1c9a
BLAKE2b-256 71ddac20eebb3019292764eb615b0e0d1d0cf1e78e422efa315ee3cd0a0ba9b2

See more details on using hashes here.

File details

Details for the file benchmark_runner-1.0.688-py3-none-any.whl.

File metadata

File hashes

Hashes for benchmark_runner-1.0.688-py3-none-any.whl
Algorithm Hash digest
SHA256 d57a2a730fa215fe8be6450982df0eb27746c100e1245512572f60eb39ad3fe2
MD5 8821f188c1ee8b70eb6ff4467af29433
BLAKE2b-256 c163b810f3434c890f430a9aca7a5008da7ce085667a943793bea309b7b0ca17

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page