Skip to main content

Bender Python Client

Project description

Bender Client for Python

:warning: The full DOCUMENTATION on bender-python-client can be found HERE.

Setup

  1. Create an account for free at bender.dreem.com
  2. Install bender in your Python environment with pip install bender-client

Usage Example

Let's use the famous MNIST example where we try to recognize handwritten digits in images.

The code of the algorithm using PyTorch is the following :

To use this example, do not forget to pip install numpy torch torchvision .

from  __future__  import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms

class Net(nn.Module):
  def __init__(self, dropout=True, activation="relu", kernel_size=5, conv_depth=10, linear_depth=50):
    super(Net, self).__init__()
    self.conv1 = nn.Conv2d(1, conv_depth, kernel_size=kernel_size)
    self.conv2 = nn.Conv2d(conv_depth, 20, kernel_size=kernel_size)
    self.conv2_drop = nn.Dropout2d() if dropout is  True  else  lambda  x: x
    self.fc1 = nn.Linear(320, linear_depth)
    self.fc2 = nn.Linear(linear_depth, 10)
    self.activation =  getattr(F, activation)

  def forward(self, x):
    x = self.activation(F.max_pool2d(self.conv1(x), 2))
    x = self.activation(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
    x = x.view(-1, 320)
    x = self.activation(self.fc1(x))
    x = F.dropout(x, training=self.training)
    x =  self.fc2(x)
    return F.log_softmax(x, dim=1)


def train(model, device, train_loader, optimizer, epoch):
  model.train()
  for batch_idx, (data, target) in  enumerate(train_loader):
    data, target = data.to(device), target.to(device)
    optimizer.zero_grad()
    output = model(data)
    loss = F.nll_loss(output, target)
    loss.backward()
    optimizer.step()
    if batch_idx % 10 ==  0:
      print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
        epoch, batch_idx *  len(data), len(train_loader.dataset),
        100. * batch_idx /  len(train_loader), loss.item()))

def test(model, device, test_loader):
  model.eval()
  test_loss =  0
  correct =  0
  with torch.no_grad():
    for data, target in test_loader:
      data, target = data.to(device), target.to(device)
      output = model(data)
      test_loss += F.nll_loss(output, target, reduction='sum').item()
      pred = output.max(1, keepdim=True)[1]
      correct += pred.eq(target.view_as(pred)).sum().item()
  test_loss /=  len(test_loader.dataset)
  print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
    test_loss, correct, len(test_loader.dataset),
    100. * correct /  len(test_loader.dataset)))
  return (correct / len(test_loader.dataset))

def run(epochs=3, lr=0.01, momentum=0.5, dropout=True, activation="relu", kernel_size=5, conv_depth=10, linear_depth=50):
  torch.manual_seed(1)
  device = torch.device("cpu")
  train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
      transform=transforms.Compose([
      transforms.ToTensor(),
      transforms.Normalize((0.1307,), (0.3081,))
    ])),
    batch_size=32,
    shuffle=True,
  )
  test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=False, transform=transforms.Compose([
      transforms.ToTensor(),
      transforms.Normalize((0.1307,), (0.3081,))
    ])),
    batch_size=1000,
    shuffle=True,
  )

  model = Net(dropout, activation).to(device)
  optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
  accuracy = 0
  for epoch in  range(1, int(epochs) +  1):
    train(model, device, train_loader, optimizer, epoch)
    accuracy = test(model, device, test_loader)
  return accuracy

if  __name__  ==  '__main__':
  # HYPERPARAMETERS (That's what bender is interested in)
  # Here we select them on our own in an arbitrary way
  hyperparameters = {
    "kernel_size": 5,
    "epochs": 3,
    "lr": 0.05,
    "momentum": 0.2,
    "dropout": True,
    "activation": "relu",
    "conv_depth": 10,
    "linear_depth": 50,
  }
  run(
    epochs=hyperparameters["epochs"],
    lr=hyperparameters["lr"],
    momentum=hyperparameters["momentum"],
    dropout=hyperparameters["dropout"],
    activation=hyperparameters["activation"],
    kernel_size=hyperparameters["kernel_size"],
    conv_depth=hyperparameters["conv_depth"],
    linear_depth=hyperparameters["linear_depth"],
  )

Now let's plug Bender into It !

  1. Importing Bender
from benderclient import Bender
bender = Bender()

This will ask for your email and password. The client will use these to login and retrieve a TOKEN. This TOKEN is personal, it should not be shared, it will be stored in your home folder as ".bender_token", and you will not be asked for your login/password again until it expires. :warning: Again, your TOKEN is personal. You should not give it or add it to any public repository :warning:

  1. Create an Experiment

An experiment is related to the problem you are trying to solve, here : MNIST classification

bender.new_experiment(
	name='MNIST Classification',
	description='Simple image classification on handwritten digits',
	metrics=[
		{
			"metric_name": "algorithm_accuracy", # It's just a name and there can be multiple watched metrics.
			"type": "reward", # The type can either be "reward" or "loss" depending on if you want to maximize or minimize it.
		}
	],
	dataset='MNIST'
)
  1. Create an Algo

An algo is simply corresponding to ONE solution to an Experiment problem : here it's as we saw a Neural Net with PyTorch

bender.new_algo(
	name='PyTorch_NN',
	# The parameters below are actually the Hyper-Parameters of your algo described in a list
	parameters= [
    {
      "name": 'kernel_size',
      "category": "categorical",
      "search_space": {
        "values": [3, 5, 7],
      },
    },
    {
      "name": 'conv_depth',
      "category": "uniform",
      "search_space": {
        "low": 1,
        "high": 100,
        "step": 1,
      },
    },
    {
      "name": 'linear_depth',
      "category": "uniform",
      "search_space": {
        "low": 1,
        "high": 100,
        "step": 1,
      },
    },
    {
      "name": 'epochs',
      "category": "uniform",
      "search_space": {
        "low": 1,
        "high": 4,
        "step": 1,
      },
    },
    {
      "name": 'lr',
      "category": "loguniform",
      "search_space": {
        "low": 1e-5,
        "high": 1e-1,
        "step": 1e-6,
      },
    },
    {
      "name": 'momentum',
      "category": "uniform",
      "search_space": {
        "low": 0,
        "high": 1,
        "step": 0.05,
      },
    },
    {
      "name": 'dropout',
      "category": "categorical",
      "search_space": {
        "values": [True, False],
      },
    },
    {
      "name": 'activation',
      "category": "categorical",
      "search_space": {
        "values": ["relu", "softmax", "sigmoid", "tanh"],
      },
    },
  ]
)
  1. Get an Hyperparameters Set suggestion from Bender

The whole goal of what we did up there is to use Bender to get a new set of Hyperparameters to try according to the settings of your Experiment and Algo.

suggestion = bender.suggest()

# suggestion would for example contain something like :
{
  "kernel_size": 5,
  "epochs": 3,
  "lr": 0.05,
  "momentum": 0.2,
  "dropout": True,
  "activation": "tanh",
  "conv_depth": 10,
  "linear_depth": 50,
}
  1. Feed a Trial to Bender

A Trial is simply an attempt of you trying a Hyperparameters Set with your algorithm associated with the result metrics obtained. If you want bender to improve over time, feed him every trial you make.

bender.new_trial(
	parameters={
    "kernel_size": 5,
		"epochs": 3,
		"lr": 0.05,
		"momentum": 0.2,
		"dropout": True,
		"activation": "tanh",
    "conv_depth": 10,
    "linear_depth": 50,
	},
	results={
		"algorithm_accuracy": 0.7, # We put an arbitrary value here just for the example.
	}
)
  1. The full code put together

Psssssst... The magic starts at line 443... ;)

To use this example, do not forget to pip install numpy torch torchvision bender-client .

from  __future__  import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from benderclient import Bender

class Net(nn.Module):
  def __init__(self, dropout=True, activation="relu", kernel_size=5, conv_depth=10, linear_depth=50):
    super(Net, self).__init__()
    self.conv1 = nn.Conv2d(1, conv_depth, kernel_size=kernel_size)
    self.conv2 = nn.Conv2d(conv_depth, 20, kernel_size=kernel_size)
    self.conv2_drop = nn.Dropout2d() if dropout is  True  else  lambda  x: x
    self.fc1 = nn.Linear(320, linear_depth)
    self.fc2 = nn.Linear(linear_depth, 10)
    self.activation =  getattr(F, activation)

  def forward(self, x):
    x = self.activation(F.max_pool2d(self.conv1(x), 2))
    x = self.activation(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
    x = x.view(-1, 320)
    x = self.activation(self.fc1(x))
    x = F.dropout(x, training=self.training)
    x =  self.fc2(x)
    return F.log_softmax(x, dim=1)


def train(model, device, train_loader, optimizer, epoch):
  model.train()
  for batch_idx, (data, target) in  enumerate(train_loader):
    data, target = data.to(device), target.to(device)
    optimizer.zero_grad()
    output = model(data)
    loss = F.nll_loss(output, target)
    loss.backward()
    optimizer.step()
    if batch_idx % 10 ==  0:
      print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
        epoch, batch_idx *  len(data), len(train_loader.dataset),
        100. * batch_idx /  len(train_loader), loss.item()))

def test(model, device, test_loader):
  model.eval()
  test_loss =  0
  correct =  0
  with torch.no_grad():
    for data, target in test_loader:
      data, target = data.to(device), target.to(device)
      output = model(data)
      test_loss += F.nll_loss(output, target, reduction='sum').item()
      pred = output.max(1, keepdim=True)[1]
      correct += pred.eq(target.view_as(pred)).sum().item()
  test_loss /=  len(test_loader.dataset)
  print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
    test_loss, correct, len(test_loader.dataset),
    100. * correct /  len(test_loader.dataset)))
  return (correct / len(test_loader.dataset))

def run(epochs=3, lr=0.01, momentum=0.5, dropout=True, activation="relu", kernel_size=5, conv_depth=10, linear_depth=50):
  torch.manual_seed(1)
  device = torch.device("cpu")
  train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
      transform=transforms.Compose([
      transforms.ToTensor(),
      transforms.Normalize((0.1307,), (0.3081,))
    ])),
    batch_size=32,
    shuffle=True,
  )
  test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=False, transform=transforms.Compose([
      transforms.ToTensor(),
      transforms.Normalize((0.1307,), (0.3081,))
    ])),
    batch_size=1000,
    shuffle=True,
  )

  model = Net(dropout, activation).to(device)
  optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
  accuracy = 0
  for epoch in  range(1, int(epochs) +  1):
    train(model, device, train_loader, optimizer, epoch)
    accuracy = test(model, device, test_loader)
  return accuracy

def init_bender():
    bender = Bender()
    bender.create_experiment(
        name='MNIST Classification',
        description='Simple image classification on handwritten digits',
        metrics=[{"metric_name": "algorithm_accuracy", "type": "reward"}],
        dataset='MNIST'
    )
    bender.create_algo(
        name='PyTorch_NN',
        hyperparameters= [
            {
                "name": 'kernel_size',
                "category": "categorical",
                "search_space": {
                    "values": [3, 5, 7],
                },
            },
            {
                "name": 'conv_depth',
                "category": "uniform",
                "search_space": {
                    "low": 1,
                    "high": 100,
                    "step": 1,
                },
            },
            {
                "name": 'linear_depth',
                "category": "uniform",
                "search_space": {
                    "low": 1,
                    "high": 100,
                    "step": 1,
                },
            },
            {
                "name": 'epochs',
                "category": "uniform",
                "search_space": {
                    "low": 1,
                    "high": 4,
                    "step": 1,
                },
            },
            {
                "name": 'lr',
                "category": "loguniform",
                "search_space": {
                    "low": 1e-5,
                    "high": 1e-1,
                    "step": 1e-6,
                },
            },
            {
                "name": 'momentum',
                "category": "uniform",
                "search_space": {
                    "low": 0,
                    "high": 1,
                    "step": 0.05,
                },
            },
            {
                "name": 'dropout',
                "category": "categorical",
                "search_space": {
                    "values": [True, False],
                },
            },
            {
                "name": 'activation',
                "category": "categorical",
                "search_space": {
                    "values": ["relu", "softmax", "sigmoid", "tanh"],
                },
            },
        ]
    )
    return bender

if  __name__  ==  '__main__':
  # Create experiment and algo if they don't exist yet. Else, load them from the config file ./.benderconf
  bender = init_bender()
  while True:
    # Get a set of Hyperparameters to test
    suggestion = bender.suggest(metric="algorithm_accuracy")
    # Get algo result with them
    result = run(
      epochs=suggestion["epochs"],
      lr=suggestion["lr"],
      momentum=suggestion["momentum"],
      dropout=suggestion["dropout"],
      activation=suggestion["activation"],
      kernel_size=suggestion["kernel_size"],
      conv_depth=suggestion["conv_depth"],
      linear_depth=suggestion["linear_depth"],
    )
    # Feed Bender a Trial, AKA => suggestion + result
    bender.create_trial(
      hyperparameters=suggestion,
      results={"algorithm_accuracy": result}
    )
    print('New trial sent -----------------------------------------------------\n\n')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for bender-client, version 0.4.0
Filename, size File type Python version Upload date Hashes
Filename, size bender_client-0.4.0-py3-none-any.whl (9.5 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size bender-client-0.4.0.tar.gz (9.3 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page