Skip to main content

Black Box optimization library.

Project description

benderopt

benderopt is a black box optimization library.

For asynchronous use, a web client using this library is available in open access at bender.dreem.com

The algorithm implemented "parzen_estimator" is similar to TPE described in: Bergstra, James S., et al. “Algorithms for hyper-parameter optimization.” Advances in Neural Information Processing Systems.

Installation

pip install benderopt

or from the sources

Demo

Here is a comparison on 200 evaluations of a function we want to minimize. First a random estimator is used to select random evaluation point. Then the parzen_estimator implemented in benderopt is used to select evaluation points.

The function to minimize is the following: cos(x) + cos(2 * x + 1) + cos(y).

The red point correspond to the location of the global minima between 0 and 2pi for x and y.

The code to generate the video can be found in benchmark/benchmark_sinus2D

We can observe on this example that the parzen estimator tends to explore more the local minimum than the random approach. This might lead to a better optimization given a fixed number of evaluations.

The goal

In Black box optimization, we have a function to optimize but cannot compute the gradient, and evaluation is expensive in term of time / ressource. So we want to find a good exploration-exploitation trade off to get the best hyperparameters in as few evaluations as possible. Use case are:

  • Optimization of a machine learning model (number of layers of a neural network, function of activation, etc.
  • Business optimization (marketing campain, a/b testing)

Code Minimal Example

One of the advantage of benderopt is that it uses JSON-like object representation making it easier for a user to define parameters to optimize. This also allows an easy to integratation with an asynchrounous system such as bender.dreem.com.

Here is a minimal example.

from benderopt import minimize
import numpy as np
import logging

logging.basicConfig(level=logging.DEBUG) # logging.INFO will print less information

# We want to minimize the sinus function between 0 and 2pi
def f(x):
    return np.sin(x)

# We define the parameters we want to optimize:
optimization_problem_parameters = [
    {
        "name": "x", 
        "category": "uniform",
        "search_space": {
            "low": 0,
            "high": 2 * np.pi,
        }
    }
]

# We launch the optimization
best_sample = minimize(f, optimization_problem_parameters, number_of_evaluation=50)

print(best_sample["x"], 3 * np.pi / 2)


> 4.710390692396651 4.71238898038469

Minimal Documentation:

Optimization Problem

An optimization problem contains:

  • A list of parameters (i.e. parameters with their search space)
  • A list of observation (i.e. values for each parameter of the list and a corresponding loss)

We use JSON-like representation for each of them e.g.

optimization_problem_data = {
    "parameters": [
        {
             "name": "parameter_1", 
             "category": "uniform",
             "search_space": {"low": 0, "high": 2 * np.pi, "step": 0.1}
        },
        {
            "name": "parameter_2", 
            "category": "categorical",
            "search_space": {"values": ["a", "b", "c"]}
        }
    ],
    "observations": [
        {
            "sample": {"parameter_1": 0.4, "parameter_2": "a"},
            "loss": 0.08
        },
        {
            "sample": {"parameter_1": 3.4, "parameter_2": "a"},
            "loss": 0.1
        },
        {
            "sample": {"parameter_1": 4.1, "parameter_2": "c"},
            "loss": 0.45
        },
    ]
}

Optimizer

An optimizer takes an optimization problem and suggest new_predictions. In other words, an optimizer takes a list of parameters with their search space and a history of past evaluations to suggest a new one.

Using the optimization_problem_data from the previous example:

from benderopt.base import OptimizationProblem, Observation
from benderopt.optimizer import optimizers

optimization_problem = OptimizationProblem.from_json(optimization_problem_data)
optimizer = optimizers["parzen_estimator"](optimization_problem)
sample = optimizer.suggest()

print(sample)

> {"parameter_1": 3.9, "parameter_2": "b"}

Optimizers currently available are random and parzen_estimator.

Benderopt allows to add a new optimizer really easily by inheriting an optimizer from BaseOptimizer class.

You can check benderopt/optimizer/random.py for a minimal example.

Minimize function

Minimize function shown above in the minimal example section implementation is quite strateforward:

optimization_problem = OptimizationProblem.from_list(optimization_problem_parameters)
optimizer = optimizers["parzen_estimator"](optimization_problem)
for _ in range(number_of_evaluation):
    sample = optimizer.suggest()
    loss = f(**sample)
    observation = Observation.from_dict({"loss": loss, "sample": sample})
    optimization_problem.add_observation(observation)

The optimization_problem's observation history list is extended with a new observations at each iteration. This allows the optimizer to take them into account for the next suggestion.

Uniform Parameter

parameter type default comments
low mandatory - lowest possible value: all values will be greater than or equal to low
high mandatory - highest value: all values will be stricly less than high
step optionnal None discretize the set of possible values: all values will follow 'value = low + k * step with k belonging to [0, K]'

e.g.

    {
        "name": "x", 
        "category": "uniform",
        "search_space": {
            "low": 0,
            "high": 2 * np.pi,
            # "step": np.pi / 8
        }
    }

Log-Uniform Parameter

parameter type default comments
low mandatory - lowest possible value: all values will be greater than or equal to low
high mandatory - highest value: all values will be stricly less than high
step optionnal None "discretize the set of possible values: all values will follow 'value = low + k * step with k belonging to [0, K]'"
base optional 10 logarithmic base to use

e.g.

    {
        "name": "x", 
        "category": "loguniform",
        "search_space": {
            "low": 1e-4,
            "high": 1e-2,
            # "step": 1e-5,
            # "base": 10,
        }
    }

Normal Parameter

parameter type default comments
low optionnal -inf lowest possible value: all values will be greater than or equal to low
high optionnal inf highest value: all values will be stricly less than high
mu mandatory - mean value: all values will be initially drawn following a gaussian centered at mu with sigma variance
sigma mandatory - sigma value: all values will be initially drawn following a gaussian centered at mu with sigma variance
step optionnal None "discretize the set of possible values: all values will follow 'value = low + k * step with k belonging to [0, K]'"

e.g.

    {
        "name": "x", 
        "category": "normal",
        "search_space": {
            # "low": 0,
            # "high": 10,
            "mu": 5,
            "sigma": 1
            # "step": 0.01,
        }
    }

Log-Normal Parameter

parameter type default comments
low optionnal -inf lowest possible value: all values will be greater than or equal to low
high optionnal inf highest value: all values will be stricly less than high
mu mandatory - mean value: all values will be initially drawn following a gaussian centered at mu with sigma variance
sigma mandatory - sigma value: all values will be initially drawn following a gaussian centered at mu with sigma variance
step optionnal None "discretize the set of possible values: all values will follow 'value = low + k * step with k belonging to [0, K]'"
base optional 10 logarithmic base to use

e.g.

    {
        "name": "x", 
        "category": "lognormal",
        "search_space": {
            # "low": 1e-6,
            # "high": 1e0,
            "mu": 1e-3,
            "sigma": 1e-2
            # "step": 1e-7,
            # "base": 10,
        }
    }

Categorical Parameter

parameter type default comments
values mandatory - list of categories: all values will be sampled from this list
probabilities optionnal number_of_values * [1 / number_of_values] list of probabilities: all values will be initially drawn following this probability list

e.g.

    {
        "name": "x", 
        "category": "categorical",
        "search_space": {
            "values": ["a", "b", "c", "d"],
            # "probabilities": [0.1, 0.2, 0.2, 0.2, 0.3]
        }
    }

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

benderopt-1.4.0.tar.gz (19.5 kB view details)

Uploaded Source

Built Distribution

benderopt-1.4.0-py3-none-any.whl (25.4 kB view details)

Uploaded Python 3

File details

Details for the file benderopt-1.4.0.tar.gz.

File metadata

  • Download URL: benderopt-1.4.0.tar.gz
  • Upload date:
  • Size: 19.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.8

File hashes

Hashes for benderopt-1.4.0.tar.gz
Algorithm Hash digest
SHA256 4b7fc6b155daae42fe8984a45ef84428cf71d3f47c0ba8bbd6fb50ef3720f4c5
MD5 67d7865d1e81a5b5bbc88e9187bea41f
BLAKE2b-256 a220cbc51462ca0a6d8b39a36a5bc16427415bc2d5f9a4785555dc0b9c06a99b

See more details on using hashes here.

File details

Details for the file benderopt-1.4.0-py3-none-any.whl.

File metadata

  • Download URL: benderopt-1.4.0-py3-none-any.whl
  • Upload date:
  • Size: 25.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for benderopt-1.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2332fc9924f951c47593812de849d9465b5cdc135234d3cbab8dcee75865cd42
MD5 f00285704cbd67f6e129c1dbda2247ad
BLAKE2b-256 eb4a22d78f93c20ee5021b1061b484741708beeef59f084ab5e309739d1b44ae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page