Skip to main content

bentoml: A framework for machine learning model serving

Project description

Model Serving Made Easy Tweet

pypi_status downloads actions_status documentation_status join_slack

BentoML let you create machine learning powered prediction service in minutes and bridges the gap between data science and DevOps.

The BentoML version 1.0 is around the corner. For stable release version 0.13, see the 0.13-LTS branch. Version 1.0 is under active development, you can be of great help by testing out the preview release, reporting issues, contribute to the documentation and create sample gallery projects.

Why BentoML

  • The easiest way to turn your ML models into production-ready API endpoints.
  • High performance model serving, all in Python.
  • Standardlize model packaging and ML service definition to streamline deployment.
  • Support all major machine-learning training frameworks.

Getting Started

  • Quickstart guide will show you a simple example of using BentoML in action. In under 10 minutes, you'll be able to serve your ML model over an HTTP API endpoint, and build a docker image that is ready to be deployed in production.
  • Main concepts will give a comprehensive tour of BentoML's components and introduce you to its philosophy. After reading, you will see what drives BentoML's design, and know what bento and runner stands for.
  • Playground notebook gets your hands dirty in a notebook environment, for you to try out all the core features in BentoML.
  • ML Frameworks lays out best practices and example usages by the ML framework used for training models.
  • Advanced Guides show cases advanced features in BentoML, including GPU support, inference graph, monitoring, and customizing docker environment etc.

Community

  • To report a bug or suggest a feature request, use GitHub Issues.
  • For other discussions, use Github Discussions.
  • To receive release announcements, please subscribe to our mailing list or join us on Slack.

Contributing

There are many ways to contribute to the project:

  • If you have any feedback on the project, share it with the community in Github Discussions of this project.
  • Report issues you're facing and "Thumbs up" on issues and feature requests that are relevant to you.
  • Investigate bugs and reviewing other developer's pull requests.
  • Contributing code or documentation to the project by submitting a Github pull request. See the development guide.
  • See more in the contributing guide.

Usage Reporting

BentoML by default collects anonymous usage data using Amplitude. It only collects BentoML library's own actions and parameters, no user or model data will be collected.  Here is the code that does it.

This helps the BentoML team to understand how the community is using this tool and what to build next. You can easily opt-out of usage tracking by running the BentoML commands with the --do-not-track option.

> bentoml [command] --do-not-track

You can also opt-out via setting environment variable BENTOML_DO_NOT_TRACK=True

> export BENTOML_DO_NOT_TRACK=True

License

Apache License 2.0

FOSSA Status

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bentoml-1.0.0a2.tar.gz (492.2 kB view details)

Uploaded Source

Built Distribution

bentoml-1.0.0a2-py3-none-any.whl (561.2 kB view details)

Uploaded Python 3

File details

Details for the file bentoml-1.0.0a2.tar.gz.

File metadata

  • Download URL: bentoml-1.0.0a2.tar.gz
  • Upload date:
  • Size: 492.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for bentoml-1.0.0a2.tar.gz
Algorithm Hash digest
SHA256 9e85746322d077094358605e9401a8734a93d0278cf64c0c68033219fd1656d4
MD5 aa91af25981d89ac05402e170b8a6af2
BLAKE2b-256 2a3e8b7609861af39adf5701a08a16faa404c6207fa539c36812279c2a2d1f88

See more details on using hashes here.

File details

Details for the file bentoml-1.0.0a2-py3-none-any.whl.

File metadata

  • Download URL: bentoml-1.0.0a2-py3-none-any.whl
  • Upload date:
  • Size: 561.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for bentoml-1.0.0a2-py3-none-any.whl
Algorithm Hash digest
SHA256 5b6f7b6a55d8428f773bdc89c78acefb2e566b1a6df5313a8e21fd5aeac72d34
MD5 0d293d15b6bb3192223231467e4d4593
BLAKE2b-256 fc3e4b995c0426f56911b9fdf192c7fd24c451ce9a3ad3cd60eb3b3173e1a049

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page