Skip to main content

BentoML: The easiest way to serve AI apps and models

Project description

BentoML: Unified Model Serving Framework

Unified Model Serving Framework

🍱 Build model inference APIs and multi-model serving systems with any open-source or custom AI models. 👉 Join our Slack community!

License: Apache-2.0 Releases CI Twitter Community

What is BentoML?

BentoML is a Python library for building online serving systems optimized for AI apps and model inference.

  • 🍱 Easily build APIs for Any AI/ML Model. Turn any model inference script into a REST API server with just a few lines of code and standard Python type hints.
  • 🐳 Docker Containers made simple. No more dependency hell! Manage your environments, dependencies and model versions with a simple config file. BentoML automatically generates Docker images, ensures reproducibility, and simplifies how you deploy to different environments.
  • 🧭 Maximize CPU/GPU utilization. Build high performance inference APIs leveraging built-in serving optimization features like dynamic batching, model parallelism, multi-stage pipeline and multi-model inference-graph orchestration.
  • 👩‍💻 Fully customizable. Easily implement your own APIs or task queues, with custom business logic, model inference and multi-model composition. Supports any ML framework, modality, and inference runtime.
  • 🚀 Ready for Production. Develop, run and debug locally. Seamlessly deploy to production with Docker containers or BentoCloud.

Getting started

Install BentoML:

# Requires Python≥3.9
pip install -U bentoml

Define APIs in a service.py file.

from __future__ import annotations

import bentoml

@bentoml.service(
    resources={"cpu": "4"}
)
class Summarization:
    def __init__(self) -> None:
        import torch
        from transformers import pipeline

        device = "cuda" if torch.cuda.is_available() else "cpu"
        self.pipeline = pipeline('summarization', device=device)

    @bentoml.api(batchable=True)
    def summarize(self, texts: list[str]) -> list[str]:
        results = self.pipeline(texts)
        return [item['summary_text'] for item in results]

Run the service code locally (serving at http://localhost:3000 by default):

pip install torch transformers  # additional dependencies for local run

bentoml serve service.py:Summarization

Now you can run inference from your browser at http://localhost:3000 or with a Python script:

import bentoml

with bentoml.SyncHTTPClient('http://localhost:3000') as client:
    summarized_text: str = client.summarize([bentoml.__doc__])[0]
    print(f"Result: {summarized_text}")

Deploying your first Bento

To deploy your BentoML Service code, first create a bentofile.yaml file to define its dependencies and environments. Find the full list of bentofile options here.

service: 'service:Summarization' # Entry service import path
include:
  - '*.py' # Include all .py files in current directory
python:
  packages: # Python dependencies to include
    - torch
    - transformers
docker:
  python_version: "3.11"

Then, choose one of the following ways for deployment:

🐳 Docker Container

Run bentoml build to package necessary code, models, dependency configs into a Bento - the standardized deployable artifact in BentoML:

bentoml build

Ensure Docker is running. Generate a Docker container image for deployment:

bentoml containerize summarization:latest

Run the generated image:

docker run --rm -p 3000:3000 summarization:latest
☁️ BentoCloud

BentoCloud provides compute infrastructure for rapid and reliable GenAI adoption. It helps speed up your BentoML development process leveraging cloud compute resources, and simplify how you deploy, scale and operate BentoML in production.

Sign up for BentoCloud for personal access; for enterprise use cases, contact our team.

# After signup, run the following command to create an API token:
bentoml cloud login

# Deploy from current directory:
bentoml deploy .

bentocloud-ui

For detailed explanations, read Quickstart.

Use cases

Check out the examples folder for more sample code and usage.

Advanced topics

See Documentation for more tutorials and guides.

Community

Get involved and join our Community Slack 💬, where thousands of AI/ML engineers help each other, contribute to the project, and talk about building AI products.

To report a bug or suggest a feature request, use GitHub Issues.

Contributing

There are many ways to contribute to the project:

Thanks to all of our amazing contributors!

Usage tracking and feedback

The BentoML framework collects anonymous usage data that helps our community improve the product. Only BentoML's internal API calls are being reported. This excludes any sensitive information, such as user code, model data, model names, or stack traces. Here's the code used for usage tracking. You can opt-out of usage tracking by the --do-not-track CLI option:

bentoml [command] --do-not-track

Or by setting the environment variable:

export BENTOML_DO_NOT_TRACK=True

License

Apache License 2.0

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bentoml-1.3.9.tar.gz (955.4 kB view details)

Uploaded Source

Built Distribution

bentoml-1.3.9-py3-none-any.whl (1.1 MB view details)

Uploaded Python 3

File details

Details for the file bentoml-1.3.9.tar.gz.

File metadata

  • Download URL: bentoml-1.3.9.tar.gz
  • Upload date:
  • Size: 955.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for bentoml-1.3.9.tar.gz
Algorithm Hash digest
SHA256 9f6ed0fc9e88eef31244d282a12d892b9e76e4605d93e3b33b06f257aaa9d830
MD5 ea68b86d7550c64dc46c374b71a9be6d
BLAKE2b-256 677b808540c7175b6d8e15a004cba2c6ac16d6339822a7d80a987b019dc2b7e6

See more details on using hashes here.

File details

Details for the file bentoml-1.3.9-py3-none-any.whl.

File metadata

  • Download URL: bentoml-1.3.9-py3-none-any.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for bentoml-1.3.9-py3-none-any.whl
Algorithm Hash digest
SHA256 ddfa8802da5b0539470cf47571e9b4c5d283335773848599d087795003b32e2e
MD5 956fda4c97810bb1942a6bdcd0184771
BLAKE2b-256 3d292049a9d9332a72f1e4558c15560a29c1f5ac87d0ac05c1f2aa0f3a11a131

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page