Skip to main content

Yaml to dataclass loader

Project description

Bentoudev.dataclass

CI (on push) PyPI version

Yaml to dataclass loader. Validates objects based on type information.

Supports folowing types:

  • classes marked as dataclass (from dataclasses)
  • int, str, float, list
  • Enum (from enum)
  • Optional, List, Dict, Union (from typing)
  • forward references to not yet known types (see example), including self-referencing

Install

pip install bentoudev.dataclass

Documentation

Work in progress, for now, check out examples below or browse the source code.

Example

@dataclass
class Person:
    name: str
    age: int
    money: float

yaml_content = (
    'name: John\n'
    'age: 30\n'
    'money: 400.50'
)

obj = load_yaml_dataclass(Person, 'Person', yaml_content)

assert obj.name == 'John'

Inline loaders

If you need to load complex class from a single value (like string), you can use @inline_loader attribute

import bentoudev.dataclass.yaml_loader
import bentoudev.dataclass.base

@dataclass
@inline_loader(source_type=str, field_name='name')
class ObjFromStr:
    name: str
    foo: int
    bar: float

@dataclass
class Container:
    value: ObjFromStr

obj = load_yaml_dataclass(Container, 'pretty file name', 'value: ThisIsMyName')

assert obj.value.name == 'ThisIsMyName'

Forward references to external types

Sometimes you might want to load dataclass that forward references foreign types, from other modules, in form of a string. In order to support such types, loader must be supplied with list of them.

@dataclass
class MyDataclass:
    foo: Optional['my_namespace.project.model.my_ext_dataclass']

local_types = base.get_types_from_modules([__name__, 'my_namespace.project.model.my_ext_dataclass'])

my_obj: MyDataclass = yaml_loader.load_yaml_dataclass(MyDataclass, 'pretty file name', yaml_content, ext_types=local_types)

Self referencing types

Additionaly to external types, self referencing is also supported

from dataclasses import dataclass
import bentoudev.dataclass.yaml_loader as yaml_loader

@dataclass
class MyDataclass:
    my_string: str
    self_nested: Optional['MyDataclass']
    list_of_sth: List[str]
    user_data: Dict[str, str]

yaml_content = (
    'my_string: foo\n'
    'self_nested:\n'
    '  my_string: bar\n'
    '  list_of_sth: inline_value\n'
    'list_of_sth:\n'
    '- first\n'
    '- second\n'
    'user_data:\n'
    '  anything: goes'
)

my_obj: MyDataclass = yaml_loader.load_yaml_dataclass(MyDataclass, 'pretty file name', yaml_content)

Remember lines

Additional information about source from which obj/field was loaded can be enabled by using @track_source attribute, or setting always_track_source parameter to True (disabled by default, but recomended). Such information is then used to print prettier errors in DataclassLoadError.

class EKind(Enum):
    FIRST = 1
    SECOND = 2

@dataclass
class SomeClass:
    kind: EKind

try:
    obj =  yaml_loader.load_yaml_dataclass(SomeClass, '[SomeClass] my_file.yml', 'kind: THIRD', always_track_source=True)
except DataclassLoadError as err:
    print(err)

Outputs:

error: Got 'THIRD' when expecting enum 'EKind' with one of values: FIRST, SECOND
in "[SomeClass] my_file.yml", line 1, column 1:
kind: THIRD
^ (line: 1)

If you desire to retrieve this information and print error yourself, access it's source field in error, or use injected methods get_root_source or get_field_source.

try:
    obj =  yaml_loader.load_yaml_dataclass(SomeClass, 'broken_file.yml', broken_yaml_content, always_track_source=True)
    field_src = obj.get_field_source('my_field_name')
    print(f"Value location line '{field_src.line_number}', column '{field_src.column_number}'")
except DataclassLoadError as err:
    print(f"Error location line '{err.source.line_number}', column '{err.source.column_number}'")

Additionaly, you can control how many lines are loaded for code snippet and in which format line numbers are presented via error_code_snippet_lines and error_format (Pretty or MSVC compatible).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bentoudev.dataclass-1.0.2.tar.gz (11.0 kB view details)

Uploaded Source

Built Distribution

bentoudev.dataclass-1.0.2-py3-none-any.whl (10.0 kB view details)

Uploaded Python 3

File details

Details for the file bentoudev.dataclass-1.0.2.tar.gz.

File metadata

  • Download URL: bentoudev.dataclass-1.0.2.tar.gz
  • Upload date:
  • Size: 11.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for bentoudev.dataclass-1.0.2.tar.gz
Algorithm Hash digest
SHA256 8fc40d4e69d1ea1a7fbce94f38bff67cdadc35d758eaeaf343a29d85a0ce3119
MD5 8554bc35924fd69bc7595c25bcc0dd4a
BLAKE2b-256 e0acc33b600e16366c5d34c5fe644481dda97e47ceba190d56f880d58ae3ef9e

See more details on using hashes here.

File details

Details for the file bentoudev.dataclass-1.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for bentoudev.dataclass-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 ee3a29de8f1f20bba6578272f68bbdaba5c7089d70b96a0995978ab454012a98
MD5 86bedb0095ab016a321d272d0d0b69e7
BLAKE2b-256 47222e908c65c819ea44d9f7afb3473e6194ba786b99c4ddae739c6b995f6b1f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page