Skip to main content

Identify locations and tag them with UN-LOCODEs and ISO-3166-2 subdivisions.

Project description

berlin-rs

A Python/Rust microservice to identify locations and tag them with UN-LOCODEs and ISO-3166-2 subdivisions.

Getting started

To test the Rust API locally:

  make run

This will make an API available on port 3001. It serves simple requests of the form:

curl 'http://localhost:3001/berlin/search?q=house+prices+in+londo&state=gb' | jq

replacing localhost with the local endpoint (jq used for formatting).

This will return results of the form:

{
  "time": "32.46ms",
  "query": {
    "raw": "house prices in londo",
    "normalized": "house prices in londo",
    "stop_words": [
      "in"
    ],
    "codes": [],
    "exact_matches": [
      "house"
    ],
    "not_exact_matches": [
      "house prices",
      "prices in",
      "prices",
      "in londo",
      "londo"
    ],
    "state_filter": "gb",
    "limit": 1,
    "levenshtein_distance": 2
  },
  "results": [
    {
      "loc": {
        "encoding": "UN-LOCODE",
        "id": "gb:lon",
        "key": "UN-LOCODE-gb:lon",
        "names": [
          "london"
        ],
        "codes": [
          "lon"
        ],
        "state": [
          "gb",
          "united kingdom of great britain and northern ireland"
        ],
        "subdiv": [
          "lnd",
          "london, city of"
        ]
      },
      "score": 1346,
      "offset": {
        "start": 16,
        "end": 21
      }
    }
  ]
}

A Python wheel can also be built, using

  make wheels
  pip install build/wheels/berlin-0.1.0-xyz.whl

where xyz is your architecture.

Afterwards berlin should be functional inside a python shell/script. Example:

import berlin

db = berlin.load('../data')
loc = db.query('manchester population', 'gb', 1)[0];
print("location:", loc.words)

Description

Berlin is a location search engine which works on an in-memory collection of all UN Locodes, subdivisions and states (countries). Here are the main architectural highlights: On startup Berlin does a basic linguistic analysis of the locations: split names into words, remove diacritics, transliterate non-ASCII symbols to ASCII. For example, this allows us to find “Las Vegas” when searching for “vegas”. It employs string interning in order to both optimise memory usage and allow direct lookups for exact matches. If we can resolve (parts of) the search term to an existing interned string, it means that we have a location with this name in the database.

When the user submits the search term, Berlin first does a preliminary analysis of the search term: 1) split into words and pairs of words 2) try to identify the former as existing locations (can be resolved to existing interned strings) and tag them as “exact matches”. This creates many search terms from the original phrase. Pre-filtering step. Here we do three things 1) resolve exact matches by direct lookup in the names and codes tables 2) do a prefix search via a finite-state transducer 3) do a fuzzy search via a Levenshtein distance enabled finite-state transducer. The pre-filtered results are passed through a string-similarity evaluation algorithm and sorted by score. The results below a threshold are truncated. A graph is built from the locations found during the previous step in order to link them together hierarchically if possible. This further boosts some locations. For example, if the user searches for “new york UK” it will boost the location in Lincolnshire and it will show up higher than New York city in the USA. It is also possible to request search only in a specific country (which is enabled by default for the UK)

Berlin is able to find locations with a high degree of semantic accuracy. Speed is roughly equal to 10-15 ms per every non-matching word (or typo) + 1 ms for every exact match. A complex query of 8 words usually takes less than 100 ms and all of the realistic queries in our test suite take less than 50 ms, while the median is under 30 ms. Short queries containing an exact match (case insensitive) are faster than 10 ms.

The architecture would allow to easily implement as-you-type search suggestions in under 10 milliseconds if deemed desirable.

License

Prepared by Flax & Teal Limited for ONS Alpha project. Copyright © 2022, Office for National Statistics (https://www.ons.gov.uk)

Released under MIT license, see LICENSE for details.

License

Prepared by Flax & Teal Limited for ONS Alpha project. Copyright © 2022, Office for National Statistics (https://www.ons.gov.uk)

Released under MIT license, see LICENSE for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

berlin-1.0.0.tar.gz (21.6 kB view details)

Uploaded Source

Built Distributions

berlin-1.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

berlin-1.0.0-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

berlin-1.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

berlin-1.0.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

berlin-1.0.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

berlin-1.0.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

berlin-1.0.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

berlin-1.0.0-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

berlin-1.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

berlin-1.0.0-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

berlin-1.0.0-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

berlin-1.0.0-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

berlin-1.0.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

berlin-1.0.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

berlin-1.0.0-cp312-none-win_amd64.whl (694.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

berlin-1.0.0-cp312-none-win32.whl (684.4 kB view details)

Uploaded CPython 3.12 Windows x86

berlin-1.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

berlin-1.0.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

berlin-1.0.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

berlin-1.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

berlin-1.0.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

berlin-1.0.0-cp312-cp312-macosx_11_0_arm64.whl (839.2 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

berlin-1.0.0-cp312-cp312-macosx_10_12_x86_64.whl (854.1 kB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

berlin-1.0.0-cp311-none-win_amd64.whl (694.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

berlin-1.0.0-cp311-none-win32.whl (684.3 kB view details)

Uploaded CPython 3.11 Windows x86

berlin-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

berlin-1.0.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

berlin-1.0.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

berlin-1.0.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

berlin-1.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

berlin-1.0.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

berlin-1.0.0-cp311-cp311-macosx_11_0_arm64.whl (839.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

berlin-1.0.0-cp311-cp311-macosx_10_12_x86_64.whl (854.0 kB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

berlin-1.0.0-cp310-none-win_amd64.whl (694.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

berlin-1.0.0-cp310-none-win32.whl (684.3 kB view details)

Uploaded CPython 3.10 Windows x86

berlin-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

berlin-1.0.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

berlin-1.0.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

berlin-1.0.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

berlin-1.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

berlin-1.0.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

berlin-1.0.0-cp310-cp310-macosx_11_0_arm64.whl (839.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

berlin-1.0.0-cp310-cp310-macosx_10_12_x86_64.whl (854.0 kB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

berlin-1.0.0-cp39-none-win_amd64.whl (694.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

berlin-1.0.0-cp39-none-win32.whl (684.5 kB view details)

Uploaded CPython 3.9 Windows x86

berlin-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

berlin-1.0.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

berlin-1.0.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

berlin-1.0.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

berlin-1.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

berlin-1.0.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

berlin-1.0.0-cp38-none-win_amd64.whl (694.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

berlin-1.0.0-cp38-none-win32.whl (684.4 kB view details)

Uploaded CPython 3.8 Windows x86

berlin-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

berlin-1.0.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

berlin-1.0.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

berlin-1.0.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

berlin-1.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

berlin-1.0.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

File details

Details for the file berlin-1.0.0.tar.gz.

File metadata

  • Download URL: berlin-1.0.0.tar.gz
  • Upload date:
  • Size: 21.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for berlin-1.0.0.tar.gz
Algorithm Hash digest
SHA256 05baa9072c72793f2465970cde80f01e19f43325aef9a55bbbc03f1767f04f36
MD5 bea23cf9b674b552fd9d5b2e02452816
BLAKE2b-256 03b60ddf3d5871c23c1aa52e9fe53174c78cf47e0448b47a28ddb607653d6eba

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b53b5041824cf10f2ade26a0d1073bb180d1bbcd8b7d4bdd1079756aa2a3329c
MD5 09cdad350366c1390239bc635faba68a
BLAKE2b-256 ead0f39eb5b494700b72d36343b10d56615acb61507b69f6dbfb918c25184cb0

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 02c13cb719abb3315f6ca9d22cebbb420a7616e604cf0fc4fc86ae74e15d170c
MD5 1b62182621ec5a6835c376a766015f9c
BLAKE2b-256 96de9ee4e7b3d6ee4c7e605d98c8daab721c8cf9addb87b28c46cf459b6e4017

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7f9dc4a36a874bafe7dd0c2339c2ea729355fa54a526e47b5252351d0faa743e
MD5 0022b9bfce9abd21444525eabd3bf228
BLAKE2b-256 45ee6d5b9fe1e2d8e0f27503ea6a4fdfcfdf6b53a4c23e3c29c20dedcfce290b

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 8ac009be2f5d771c73618a9914a734011f76957d94de9713fcbb393eac2edded
MD5 3ffcf63f497d0c338120e5ad4b109c7e
BLAKE2b-256 736568621ba2fa237488aea2ab9caf52698d02703b3b4c5ba853d0bc7a431a05

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a727c74dbc496eb90fe2ee9427004f9d3bf77318d8f848c9388f5ddc05168a02
MD5 0bd29d33acdcb398ddf796cd06835b78
BLAKE2b-256 814756f9930ee9f6a5bc3a7e21d9a95ba62b4e6221a92dc8bfbd856a352cf3f3

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 87d252062f2245051d41e3e71a8dd1910a33f2b3765ac3311d6031600bd24183
MD5 7b62b02a3bd08011eaecaf4d612bbcce
BLAKE2b-256 bed34138ca42dbd491ce5f4e014e4881a7104fa2a4f89e592d3ba7a04d9c53cc

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 849e28b22c3cdd51f7ad48954e8d63a38a591278b66667ce8a6dd80d1ba565c5
MD5 8e0c5ba409aed50d6ef5b6a7a1b9aea6
BLAKE2b-256 a1f76b3a9c576ec6f37b412d0cdf59ae35c484d07cec6be50f832fbeacca0696

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 344b9b4c42058ac23b229deb182934783f30e5d8e846bb5e770619024f266d75
MD5 e2629e680148dad881146420e5edb158
BLAKE2b-256 5746295898086db2cc6cea01aa61172889686685c9d2124408ed0d6fdb70cd3a

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a40773b311557531cd8a17adc203598d96bda7efd65601312953361dc52e485e
MD5 35425fcb7d64e7a307a390be859399aa
BLAKE2b-256 334b587d7da106fbdec3586e72d15cb90edc9d2edeabf75721711aeaeee0659b

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a3e1b20a71365bfcf99d00570c78e471052bd664980fd907fdb2ad9f922e077b
MD5 36380dc289aededece27cf56bd8f04e5
BLAKE2b-256 45cbafa8c46a89927d8d82fa031d9d5c8bba24eafaab6b5e59f5e0081d274815

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 bd1baaa84082023eb296dd896faf0f5b7c80511eb1e0a543e04622aa6075a4c1
MD5 55eeae7d6aa4b1c0f3c336fa04becdf3
BLAKE2b-256 0bde774c0d9f79b7688e094cdf6babf7254401ee9de8d29fdfddb1a60eea25e3

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 5305f7a52e920fdfe75b62d2a1273df3f00fbd5ebd08c8f1c28169afb83e69c9
MD5 045fdefaf0ad5dec73de6587af3f10b1
BLAKE2b-256 c13a776f725df97a7337e3692aaadf2337aadaa0ba61362bc52f6dac467bc4e6

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a7e0ddb37efd697f812185dab1a8ae3b8fa15741d77c8942da8634bc7a669767
MD5 fe897eea9b664034a409b77558a474f1
BLAKE2b-256 f898d5269e74840901111ed1448cf6d5d247b9b72eeda9a5961e28278400656b

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 bc85de770b992f3b327015a979d14f2f16fbee1f9d336a7a771548a5df949839
MD5 9cd82e975bf57d076c7ad73a761cb011
BLAKE2b-256 ad6d6e0ed3da96ca1f09cea326a9d90d55516d7c9adc9a95f27a5842df3e6f3a

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp312-none-win_amd64.whl.

File metadata

  • Download URL: berlin-1.0.0-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 694.6 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for berlin-1.0.0-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 d341a994ffdb66ff2a7062660e9bb5a85fe97fb6b9d397f844942ac5280d2cf6
MD5 51c3b78688ddf07bc8319ed4c8b7d6a0
BLAKE2b-256 8af092dcd2d279f51b07fea25f45085ce6a4c8b1125e4dacb82bb38cf33022d2

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp312-none-win32.whl.

File metadata

  • Download URL: berlin-1.0.0-cp312-none-win32.whl
  • Upload date:
  • Size: 684.4 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for berlin-1.0.0-cp312-none-win32.whl
Algorithm Hash digest
SHA256 a6d39636e9ce88aea802cd3da77ffa62b5c7f55ced8567c2542e4b91464a4198
MD5 10e2c13da50f7ca44a3bb964dba9a770
BLAKE2b-256 f0b3c8ecbd51e6581a0f1e473bd45c55da3bedf7cb185f78e2e6f737e46e0c35

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d84fad9663627830d15ed61d971d48790af6a7ace4587a6504bb06a3598c7c4
MD5 e28961ef0d9ef83478d5f9edc1f509bf
BLAKE2b-256 ab6938dd928a95ab4888fcc7d08b104d6a52d0797b96a7021d1931327ed29eaa

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 86effcf2a4025692d276d5c79420d0b2d71cff3b97dd9791721bfcfaaba109b8
MD5 237d98c615908700e897f823fe7a516d
BLAKE2b-256 cdc757ecaf6f6ac9bb8f353db62fdb29adffb3de61d21675ead004dccc830201

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9f7a3de8f312ea09d5afff02107c5f02cb1bb3154f2fa401c159103ce7419387
MD5 a5cd6a937b21345fb4e5c0eb2a10490d
BLAKE2b-256 590b147431577e13a813201213a34f45374651799b10e4f921354a29a254cccb

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9f88f114951f498d9c090434e357345dc5c51f70a6d236151780449eba6d0bd0
MD5 892ff1cc0141d901885757f0e907a674
BLAKE2b-256 7fbd9864ca9758ba08c525ef5846ea9315bb7198c647eb321e29595a12b6f570

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 bc1622681668a4781af6df807d82a37154db8a13af29bab0ff56703c28138f94
MD5 1dd077f661344ee754983841e63c123e
BLAKE2b-256 666f6e45d3bbd2d66238b272001932099a282f2c8f6366d3aca1ba4f785a068a

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 53e482089f778a674aaefaf1ce576db7f8f5459d66dcc3deafb2666800f1b056
MD5 c59c6f5ece3a6e25b8e6e2bb3d3bed00
BLAKE2b-256 6fe9f4e14208c749f1f2c6895c1ac82a00bc23d0931f04033024e261dfd47d32

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 b36a5b50ab03c90a75d45cfd29443975503b034cbaf024acb6475f44c5472f8e
MD5 b1c73e3aa833fae3834465a962e692d0
BLAKE2b-256 372b2f1cd0f23b5372d26ada007fce41206a5864b616aa4d19f01007b8eb55ac

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp311-none-win_amd64.whl.

File metadata

  • Download URL: berlin-1.0.0-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 694.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for berlin-1.0.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 7ed4c5f1a67d2275aed7aff28e9745e4f8ed8422f745990ba021d420ebd75e81
MD5 8a85f900ece50f3eac3574651464d65a
BLAKE2b-256 f62b55ce22e6652f03bf9ad3d886e3255a960f1d5c7be27be89b1313c813a517

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp311-none-win32.whl.

File metadata

  • Download URL: berlin-1.0.0-cp311-none-win32.whl
  • Upload date:
  • Size: 684.3 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for berlin-1.0.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 b66e5c2d6d16817886ad5bcf24f771bcd944245ea2dec98f697ef43d32f7ce47
MD5 a5089b9aca180adb165b2c29fd1bc0ff
BLAKE2b-256 3efe3cf818f588c47680a7166294a27b3a01d9d24465618fa1b0df55563c1ec1

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 05eaf24481d8e4b049f9b5b1ff63e54c269147777e90e7e5b9c3140fc897b58f
MD5 89732bd6b17720e26316d36181bc184b
BLAKE2b-256 08899d8c4e1e6628b50400ecc8cf3c36dd46c35731aa137fa6444cabccdaef07

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 077710338670567242f3e62a89af1ea15eeb306fc87cd2f1a71e2eaff0f599fe
MD5 54ba7678ca05ad054ff21998e572f8a4
BLAKE2b-256 cd2f294d14a9c7336403f3eef317ce6ac382d4360a15b523c6abadaf37333843

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ebce8af05de87fe9197a79728ee9e64dbba99312c6b3406117725621b2be0fef
MD5 ce2a4bf7a1807c82e7122505eac36824
BLAKE2b-256 f8c7ff340f7550523dd639aee3f3f99591232be43c2d6ef7af87813eb929bc22

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 264e077217ca71fcd2cffe5d874b48547ed3d176d300424e99683e4e83d8a121
MD5 467a1023ca62ae9eee1f338d5dfa0bd1
BLAKE2b-256 8321bcd6b570218c21ba757c797b9f3ac7f7856a05078fb36a046ad3802d8786

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b26c1205e11dba947b76f80a669715fac633f08c560ba7b87de8e853112528f0
MD5 d21003c19d2c51aa43b5679ed443c999
BLAKE2b-256 d2e07242f14ea1c9ac77b19ac31d39b6ca463cdbb52b422a2c0a38da42f4cda2

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 68ee83fd90eeebf015da00da54dcc5a6bc95ee660bfee35ed5ccf03355e89fb2
MD5 d004f51b60f0b3830cba930790c8432b
BLAKE2b-256 05dce8362ff44d18ed32af8ce94b002ac44b6faafb7243e6431adc3b0e2687c8

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c5999827d54c75a9edebd58dbba4fbc915558acdc02f0d9a858273ffc9a8ede7
MD5 992b2765d65db9f94b92d88c78579eba
BLAKE2b-256 384bb20f8ca2c5c41052ad76b972ebbe866b8a55b729e095408b7212fefde83f

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 314ad3a1d1fe9b674189e35075ec86127434a6274458d0df09622355b9d10c18
MD5 82da92bba96b84dcdad05b97ff856aea
BLAKE2b-256 33348c787a38eb5814715677434326630aff1d52410100d0e91346f643611d33

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp310-none-win_amd64.whl.

File metadata

  • Download URL: berlin-1.0.0-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 694.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for berlin-1.0.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 94a64442307198ad492a7c540248c17a90d03ff342b18ff2369106b810d19371
MD5 75d1c0235bccb0702b3412fde61ab84d
BLAKE2b-256 b309b0097f1993bf6469baa9a5d2115d3ea6774147b70f803500c5b3b2d08d16

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp310-none-win32.whl.

File metadata

  • Download URL: berlin-1.0.0-cp310-none-win32.whl
  • Upload date:
  • Size: 684.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for berlin-1.0.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 80f39c381fa38ad3fb5e7a5b7641cbdea7faf107629dcdb51645d42b93e30575
MD5 4e23bf70575b61646e5ebba512ceeef9
BLAKE2b-256 63be7fd67c8da6932273cb2fcdb6b0f220d5e0e7d06cbc5d589bf7308553b6c8

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2a0d541e77bb5daf898fe9a00a6f7d351efe3d578a7a6ecada2f562985185b64
MD5 95de17b3cb833e1ebcf70d4955534e2a
BLAKE2b-256 d84366e13377a08b74896d04c8f6c42f7cb4d058eee2cd7ce8ba3ea5fa17f1bd

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 70ad66e4b6f1cc4d16d4d592c3905d1e1982dd10216b90fd544b5a9904c493f2
MD5 522f43a2d92cfb8487411db295ac8511
BLAKE2b-256 5c7523217f2dcb8a8b5ad89ac6b1a1b632dbe04a984bf39b4c00513f2ec78d4d

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e7f2985a541a24dd8cdb2bc42e54ea6646118760ac846ac118ece4da0f3e2f2a
MD5 c34b8fda02fb5282618420fb6abce1de
BLAKE2b-256 83f6d952e298a37c39e7b44b137e2c5d04e0179c130b8c930e8ba182e80f2b87

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 1da6b427e91e3bc293f5e1a5cc026836929f7f853481ebfd655854e639cc2214
MD5 29c2f2ec0b77fc6354508270df9aefd3
BLAKE2b-256 fa6e4a8c1790abdd4a8b7f1bad92bea33dc64e4753f2da85caeafbe89c9b5adc

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3c2f8221cfa8b620a12153ad8dfda0a7503248f1ef959b35757bf71e03b73204
MD5 36ee5d8cba0b73423d8d538e1870712b
BLAKE2b-256 919b18351c7a228606224dccc205ab32df339b18b522fdddc32d17cef87a85f3

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4b7e4bde252d94e91d0062ff4c04e726b563c08c9f280ac7caa763f4abf3d9b7
MD5 1d281e3aa9696a8f2bba5499cdc6df4e
BLAKE2b-256 2b7e41224993d69c5ffbf7caa212a3b17778a4fa9077b9bf4d02e5049e211e2d

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7f6d43fa76e972318da7bf6132f8dc2bda88b0b3a27d8200a1638b73a7a60064
MD5 ac9b120a867e8b668bea025d6cd2f54b
BLAKE2b-256 74fce81fee62a9c71e68b920a560b0ccd1d440e2f063ef2f8be734c7962f944b

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 d8588374680fe1a0382b2718d0349fdaf2ea9687e9d53bc4ac7e16a66e93dc7c
MD5 a93edbce257afcaa9c598c9463a2ad2c
BLAKE2b-256 32fce0fc520d397eab0fcb33fe337e790e47e0cdd42cb5c21355cf3aebb85b1a

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp39-none-win_amd64.whl.

File metadata

  • Download URL: berlin-1.0.0-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 694.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for berlin-1.0.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 bf351ef05be44c08e751eb461fab8476a282cb9aedfd0723d4601a605e5d5760
MD5 4ca52dd4fe70fb7bc282fb839762673c
BLAKE2b-256 8f1b8fb457d6f844d3037702416d3f2e0560680cac61d55fcc21f3e69b6a294f

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp39-none-win32.whl.

File metadata

  • Download URL: berlin-1.0.0-cp39-none-win32.whl
  • Upload date:
  • Size: 684.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for berlin-1.0.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 8a2d90ac9dfc388e72192bfe1e2724fd7f44c61fc013a296582f264915f2e540
MD5 228590034d9fa94bc20d06f6c88ff972
BLAKE2b-256 48a01681bf0ccae5ccbf98d76c21fc5b8ba2ef70874d860bc961f08723f8bde2

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aacb5e604fbc3760d773c0d11ffcf2af720dade5adceccd573be941b0db3c45a
MD5 f8c8dca67ade142aa2843a55c8b7a55c
BLAKE2b-256 2450d065ec82285c536b00b287f9abca60249bdec322658deac0dec115945e7e

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 0624dd28f1c8ca2cff1fb4bc3d2d743bdee86aae66dedfdff8881dce064e3961
MD5 cbed310e8329db375d2c86def07a46d4
BLAKE2b-256 3e0c9c3962f0ac13a485d26b5e4aacc77a0597cb3c052d8f85f4f45e0e2bccab

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 cc4530f03f3054244860b5b98b49b8c76088c616eb0bf95f604ceb9426b4209b
MD5 5244d3a23dcb47abfe3042f893d02823
BLAKE2b-256 7cec6bad1511d27857ac504304a019bc005b116aa69823f18eafa852cb66f1df

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 248405bdb285bcb6a408f287e1ee79fce2d9732690153dfa50d316036a257f35
MD5 d2468899f8ef11a0bb550221a09a8b83
BLAKE2b-256 4b956466274ea9e54c26b5e77eaeb25b97c1fc6ef4737701aa4b989d4f97160f

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5e9eff7bb989686efb29edcc8d03ce975dfafc84f0aad0aa9348d9385fa2aca7
MD5 1237e046cdab612951397c7373e812fa
BLAKE2b-256 a87853a05dbcf57afa15b0ff8c02b615c9b07196d506297216d68d0d5fda1f82

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c7551cda2e8670921906dcad2289b9fe792a1bbee141d9d3f9759487d468cc3a
MD5 d42b19c3bc27a5876a69de2ce77e6d6f
BLAKE2b-256 18a4a2d964ba6cadf6efe12d278880f9da9d5b20eb5c653149436125d2428f07

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: berlin-1.0.0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 694.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for berlin-1.0.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 30f732bf2a61b0d891213c93e41ff63b547b884cfa88a6ab0f399593f92179ed
MD5 5a44a2e760b8f9329ae32143dadc6ae9
BLAKE2b-256 0c297da2c72212b37ae31bc62f48eb1b4e94d3a5fd08b2cc26d80b6ab4996a91

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp38-none-win32.whl.

File metadata

  • Download URL: berlin-1.0.0-cp38-none-win32.whl
  • Upload date:
  • Size: 684.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for berlin-1.0.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 af46be80d258686600ab1fa6699d6ed3019bde1036330283496c97b1609ecaf6
MD5 f1fee57c976d24b98f47a0a7e28a3e0e
BLAKE2b-256 80b091d8d604fd55e58de9682ceb713cd575ed214e58a7ae0f2191ecc3ab9466

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef8b386e7762a92c509a30b23f9afbc10d0f4c18579f5a83873e8c822b029194
MD5 2ca91e488dc72b8417a6db6ae6416ad3
BLAKE2b-256 6d4cc50a1267ae63d37a248da73e4c5f12cbecccd8849c0206e03461a738dc91

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 8516d75868182ad59b43d8f7fd049700f8f60bdf6b33b2caeb5fac0c4e17489a
MD5 5490f4645bc86003b35e7bde3dfff2e3
BLAKE2b-256 a7b4d2b838bef903845a5f8b4e14389a5c3d0fba0ac26829bd313f250c0f7700

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 505cbe20ec476f3668a1e3caf2f260cca27e9f46edf644ba661d9c545c6537de
MD5 99a09f10a7ade05c73951e05781eb598
BLAKE2b-256 c724e6cdbb944452b2b8147fdddeb17d94eed23d80fda9d80759fdc579a2c6d5

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 ea575839c1dbe6dd51fb37ca72b9f2d6c071329f62fb6dfbc2f8531eebef1b48
MD5 b2baaeef90f2e8f3b8c0d915b559eeab
BLAKE2b-256 28adf3e1d721e5edd5dcb145c992091b20e9f23cff1ec66c00d8a278f45e624b

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4dcb1b22b105d9f36b01036565ded6c4fa0b1c840035085f30c9ebb3bd6d6182
MD5 19088ea303e89e909f5316b269b46143
BLAKE2b-256 858df517f9f619ff4d6fe66419ddd9781f82cfbeaa1e4764a0e709df92c34474

See more details on using hashes here.

File details

Details for the file berlin-1.0.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-1.0.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 81ec4da9c2f0f31393431337c770721a087f33fbd374b1fdeae6186afb1705c0
MD5 41791a2987603b22e330f32d6c77756c
BLAKE2b-256 d57df5bb8994846ffaca09c8f526b03bd8469cf53026c7af66fa6d35f2fd5ac4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page