Skip to main content

Identify locations and tag them with UN-LOCODEs and ISO-3166-2 subdivisions.

Project description

berlin-rs

A Python/Rust microservice to identify locations and tag them with UN-LOCODEs and ISO-3166-2 subdivisions.

Getting started

To test the Rust API locally:

  make run

This will make an API available on port 3001. It serves simple requests of the form:

curl 'http://localhost:3001/berlin/search?q=house+prices+in+londo&state=gb' | jq

replacing localhost with the local endpoint (jq used for formatting).

This will return results of the form:

{
  "time": "32.46ms",
  "query": {
    "raw": "house prices in londo",
    "normalized": "house prices in londo",
    "stop_words": [
      "in"
    ],
    "codes": [],
    "exact_matches": [
      "house"
    ],
    "not_exact_matches": [
      "house prices",
      "prices in",
      "prices",
      "in londo",
      "londo"
    ],
    "state_filter": "gb",
    "limit": 1,
    "levenshtein_distance": 2
  },
  "results": [
    {
      "loc": {
        "encoding": "UN-LOCODE",
        "id": "gb:lon",
        "key": "UN-LOCODE-gb:lon",
        "names": [
          "london"
        ],
        "codes": [
          "lon"
        ],
        "state": [
          "gb",
          "united kingdom of great britain and northern ireland"
        ],
        "subdiv": [
          "lnd",
          "london, city of"
        ]
      },
      "score": 1346,
      "offset": {
        "start": 16,
        "end": 21
      }
    }
  ]
}

A Python wheel can also be built, using

  make wheels
  pip install build/wheels/berlin-0.1.0-xyz.whl

where xyz is your architecture.

Afterwards berlin should be functional inside a python shell/script. Example:

import berlin

db = berlin.load('../data')
loc = db.query('manchester population', 'gb', 1)[0];
print("location:", loc.words)

Description

Berlin is a location search engine which works on an in-memory collection of all UN Locodes, subdivisions and states (countries). Here are the main architectural highlights: On startup Berlin does a basic linguistic analysis of the locations: split names into words, remove diacritics, transliterate non-ASCII symbols to ASCII. For example, this allows us to find “Las Vegas” when searching for “vegas”. It employs string interning in order to both optimise memory usage and allow direct lookups for exact matches. If we can resolve (parts of) the search term to an existing interned string, it means that we have a location with this name in the database.

When the user submits the search term, Berlin first does a preliminary analysis of the search term: 1) split into words and pairs of words 2) try to identify the former as existing locations (can be resolved to existing interned strings) and tag them as “exact matches”. This creates many search terms from the original phrase. Pre-filtering step. Here we do three things 1) resolve exact matches by direct lookup in the names and codes tables 2) do a prefix search via a finite-state transducer 3) do a fuzzy search via a Levenshtein distance enabled finite-state transducer. The pre-filtered results are passed through a string-similarity evaluation algorithm and sorted by score. The results below a threshold are truncated. A graph is built from the locations found during the previous step in order to link them together hierarchically if possible. This further boosts some locations. For example, if the user searches for “new york UK” it will boost the location in Lincolnshire and it will show up higher than New York city in the USA. It is also possible to request search only in a specific country (which is enabled by default for the UK)

Berlin is able to find locations with a high degree of semantic accuracy. Speed is roughly equal to 10-15 ms per every non-matching word (or typo) + 1 ms for every exact match. A complex query of 8 words usually takes less than 100 ms and all of the realistic queries in our test suite take less than 50 ms, while the median is under 30 ms. Short queries containing an exact match (case insensitive) are faster than 10 ms.

The architecture would allow to easily implement as-you-type search suggestions in under 10 milliseconds if deemed desirable.

License

Prepared by Flax & Teal Limited for ONS Alpha project. Copyright © 2022, Office for National Statistics (https://www.ons.gov.uk)

Released under MIT license, see LICENSE for details.

License

Prepared by Flax & Teal Limited for ONS Alpha project. Copyright © 2022, Office for National Statistics (https://www.ons.gov.uk)

Released under MIT license, see LICENSE for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

berlin-0.3.11.tar.gz (20.6 kB view details)

Uploaded Source

Built Distributions

berlin-0.3.11-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

berlin-0.3.11-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

berlin-0.3.11-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

berlin-0.3.11-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

berlin-0.3.11-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

berlin-0.3.11-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

berlin-0.3.11-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

berlin-0.3.11-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

berlin-0.3.11-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

berlin-0.3.11-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

berlin-0.3.11-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

berlin-0.3.11-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

berlin-0.3.11-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

berlin-0.3.11-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

berlin-0.3.11-cp312-none-win_amd64.whl (682.9 kB view details)

Uploaded CPython 3.12 Windows x86-64

berlin-0.3.11-cp312-none-win32.whl (673.0 kB view details)

Uploaded CPython 3.12 Windows x86

berlin-0.3.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

berlin-0.3.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

berlin-0.3.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

berlin-0.3.11-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

berlin-0.3.11-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

berlin-0.3.11-cp312-cp312-macosx_11_0_arm64.whl (830.1 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

berlin-0.3.11-cp312-cp312-macosx_10_12_x86_64.whl (843.8 kB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

berlin-0.3.11-cp311-none-win_amd64.whl (681.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

berlin-0.3.11-cp311-none-win32.whl (673.1 kB view details)

Uploaded CPython 3.11 Windows x86

berlin-0.3.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

berlin-0.3.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

berlin-0.3.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

berlin-0.3.11-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

berlin-0.3.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

berlin-0.3.11-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

berlin-0.3.11-cp311-cp311-macosx_11_0_arm64.whl (829.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

berlin-0.3.11-cp311-cp311-macosx_10_12_x86_64.whl (842.9 kB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

berlin-0.3.11-cp310-none-win_amd64.whl (681.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

berlin-0.3.11-cp310-none-win32.whl (673.1 kB view details)

Uploaded CPython 3.10 Windows x86

berlin-0.3.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

berlin-0.3.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

berlin-0.3.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

berlin-0.3.11-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

berlin-0.3.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

berlin-0.3.11-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

berlin-0.3.11-cp310-cp310-macosx_11_0_arm64.whl (829.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

berlin-0.3.11-cp310-cp310-macosx_10_12_x86_64.whl (842.9 kB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

berlin-0.3.11-cp39-none-win_amd64.whl (682.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

berlin-0.3.11-cp39-none-win32.whl (673.2 kB view details)

Uploaded CPython 3.9 Windows x86

berlin-0.3.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

berlin-0.3.11-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

berlin-0.3.11-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

berlin-0.3.11-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

berlin-0.3.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

berlin-0.3.11-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

berlin-0.3.11-cp38-none-win_amd64.whl (682.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

berlin-0.3.11-cp38-none-win32.whl (671.6 kB view details)

Uploaded CPython 3.8 Windows x86

berlin-0.3.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

berlin-0.3.11-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

berlin-0.3.11-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

berlin-0.3.11-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

berlin-0.3.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

berlin-0.3.11-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

File details

Details for the file berlin-0.3.11.tar.gz.

File metadata

  • Download URL: berlin-0.3.11.tar.gz
  • Upload date:
  • Size: 20.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for berlin-0.3.11.tar.gz
Algorithm Hash digest
SHA256 6c7e721f6d3ddb8de639d32eb8e8a22267dd8a403dfe5ecad0b924445b37eda9
MD5 118385fc454fe3493dffa0b590f8e9e7
BLAKE2b-256 4bcacf6c9d8a9070044b6ce0b2143fab6f5508b36e8d08ea0f01c9d6d8f02a75

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5bd5d744b92bae61c76a357ab60a9d37d79818eb91ffba28da957a6978e75712
MD5 88677818ea6a1c4b3903936a0ce515e7
BLAKE2b-256 84875947b79cd1b25904053a04d96c503b99ce616609077e31902e1697c889c3

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1cbd49919ae180ea6132a10aebfcb7b5a1b52638fc33002e7ef2b98618258e90
MD5 01194817b0cd5670886301fde321cf60
BLAKE2b-256 0251516a2cb3882507f3770b7a70ff8e3619e5058f0deba2b4bca81c9c5cdff3

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 520d0dd7fc02157bb4f44f9b16b29bf19853bffa46141fa4041c0f11e693279d
MD5 ebda359270010db66c2c6a49381535b1
BLAKE2b-256 7a0c278adf0169dd7efdaf56623a05f8f0a34c18c57e18dad00871b693b8c826

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 302f211ee68da8ed0d9aeef72a2c466a00971d5b80adce4dd72d430bf7750dc1
MD5 faea8feb1c2865866b3c8da592b7f769
BLAKE2b-256 431b1fe2bdb2e9abcb547f2ef515e307a248904a3c37ce4846a8262674488612

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 423aad6cacc769edd492d51f3739ef37c9dfd0d37749a5b15dafda8955d79343
MD5 2dc1f67013da09f26b0b0a2680813f3f
BLAKE2b-256 3aa487d1c3c9975f8d839d8ba27f3fbbe3cf410232d20aee691ea75d0a10fe31

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 0b900936968075ff1fb85290a8f33d766c52ad6c1181c1330a76e27c3422aebf
MD5 c770aa80faec116cd2ee097908f9feba
BLAKE2b-256 dd15264b7587c3937a607d5406653321a835c1c1dd13fc29a23429cbe231d596

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8058b29f08fe6bcc2dc128f97480366db3c6609af7da40691109a71cad95861d
MD5 cf0e515191cfb9b732d10f9c0fe849b2
BLAKE2b-256 1aa8db3c874f7ad5e6d7c4ce71506c51e7c5f4e42d709da9bf72a8452ab9b782

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 44b96ef619fd6c712832c6850426d2fd8f1ab6473dd74e90a8612628ee0a854d
MD5 03ea92fc97e638ffc763d71a8c64ea23
BLAKE2b-256 d04bd3ffc114f4202584f709c0d63301b7a2b25d677d482db35f6bf916a67322

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 84825031a097f92a5ef56fdd846323c8d66e675d74a6c6e56c6265d4a32f3a3a
MD5 1077b82b6d1a0959ac2ecd431308e479
BLAKE2b-256 01d6d477c85d4c8f74137498d6a87761c7f7c21de2306362a40cc9d73b154863

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 055262796e853f617ad93b1a034dfefb878eec80ff6a89f5d565a2b2e180c87f
MD5 fade7461a710cb1b0d250afdd4dda2d0
BLAKE2b-256 938fc70c4239e569898f2c5f4cc753770ee0113de3018ca23d90802f5bc62578

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9d602796f8a68c8c0bac705b4011d6d7a41ef0f8938a4706d79b13f375501069
MD5 848725f0f88100c757119dae70b4520b
BLAKE2b-256 1d940ee91bc29a3066053eca4c66ea8ed6ceb9f5d852d495fc6ca5b339a57865

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 c297b76d0328e0636502ea78c22f96189af34221fbcaec9703cd0162007d79c7
MD5 32681deb2f67cde84a1e94253818bdb3
BLAKE2b-256 e6e138119865f6b686a2beb215589ed21aa861fb9f2053de5925e1c554dd7608

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 754708ced74e06fe631e576702de84232998bd4a3e58596bfda413a3700fa358
MD5 9ad5daaf8a8832a7053055a2807deb02
BLAKE2b-256 96d7d6858d9ad60e62727b4720cbe7dd1c68c6690f6e6cd1a74b23f4cb355725

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 05b27a7335a7a8294446d90d97f11a07d316359ad3fd8226abfe4e84c25f7ddc
MD5 57bac638184277ecd5dfdc4e18d2dc31
BLAKE2b-256 63e2b9a75722df9c4cafcd12c0896b442afe903e9677c0e9e8c0bdfa29b55f84

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 c230eb5cd8d43aa786eed00619eed804cac41779a7d09caa5984fc5c9e908175
MD5 18fdeaf6a371b0aaaf00026ec0ad1ba9
BLAKE2b-256 eeeb9556552cdc4e18f5d925b56be091e4b6824d3faed690eb8a730006ae7a59

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp312-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.11-cp312-none-win32.whl
  • Upload date:
  • Size: 673.0 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for berlin-0.3.11-cp312-none-win32.whl
Algorithm Hash digest
SHA256 7d646dc535dff7b0b10b92508536155018da379707517f0fdb51f8cae7a6e9d6
MD5 bf8d856963850c8c7b700d5802d7ef23
BLAKE2b-256 f14d959b232d7c1c561e3cfe9f0b2e7940f8f4827a48e62a7dde34e7d51652dc

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5901313e9c56480b13acdb0aa023ac16c8669c9f35a1353bb8767bda5f73ff32
MD5 22b9f6c474fb2103423ab14f112a99c3
BLAKE2b-256 be62b4efabb5574feb568857a1daa633a8ad26c0d7c4d86e009429eac33149fa

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4a939443943f9abfcc704b45246b256763215c863f8eec1cb0859edf7bc36b32
MD5 33933490e5abac08684cdac795e84e37
BLAKE2b-256 429286ae10f6559154770324bf1c0dd99f0e77e0d4c12f0e331feb4f8b440a92

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a7e9b612cfe2558eb401513ac5c34acbcdc9409e4ff7a8013728479d98b966b7
MD5 09044d22aa39d792354e821c3b75dc7f
BLAKE2b-256 80d6ec0060a1f8f7e613286c6a519051d02e24ae2fc927ae63c1c839c3937981

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 25eb960fbe23cb4f7f1ad465e3b1511576def0865c162a089453ae79166add45
MD5 283e25d9b5d3350310f28f9d29140c9b
BLAKE2b-256 7b23dc1a7fdd104c793e832308bff65e41f41aa5540c2adbe69fcb88c713f842

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 15a7051d9a790aa5372a3486944e665d886130c4b1ab20c0633fa2df4d375862
MD5 9516eb8c137ba821a5b48615a8deceef
BLAKE2b-256 5507b6345381e78c24d8cbdd8478a945c82c15863fabeec42fff499089ddc736

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2f4b3b6a1af6b79265f488e9ca7f2f3a2fe7918cca9cd625e72ab9286da45568
MD5 a0c30b0b1920aa57f23f8444f4136f05
BLAKE2b-256 498003bebf607152f0a72b664ed7b57c04a5833f11f719e3a7ef22c61b71a01e

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 9a840d62bb11941f49e72655f63326a9adfe2f16bc32b72df3b320a9ac921dcc
MD5 57d09f64ff0405b3820c2c02e8ca6397
BLAKE2b-256 0fc712f7c8f3539cf71171e84576a6647363d241e9780bbbd213f00173bad5f2

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 689594e16ec838265a88aed354fbf82b7e6ecfcc15f79dc55ca4e52e9c3786cf
MD5 15ecca52ea51eb3b11503d638631addf
BLAKE2b-256 5f3a062907cf82d311775644709a3b9ecb7af5d7c5e72670a883aa40e194a1e3

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp311-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.11-cp311-none-win32.whl
  • Upload date:
  • Size: 673.1 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for berlin-0.3.11-cp311-none-win32.whl
Algorithm Hash digest
SHA256 6efd2c4d62e4ca7e0055b2f29bea0cbc9e4c41519066af6715649cfa99831424
MD5 7e9ecd683951abb8e5f73a157329695f
BLAKE2b-256 de959a2dc93147e09acbf23a3eb7376da5204e700d3c9290fa37572179373893

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2618b33369abd95d35f65a7a6467df93e237efd7e5df22fd4f3cb051ed2b09c1
MD5 f9dc70cfac1d4e79f58569f408a7045e
BLAKE2b-256 71ed18432375f14689f5fb45a3e6a1cff889081234f278d8bb76dd4c591fc44f

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4ebbf87ff7d49467a77994822b9ad6d715695ac53398cd8b3c017f0c3774371d
MD5 7ad67b804eecfee374bb49cf53a0233c
BLAKE2b-256 a92925365255d56fd4ec558c3b4b4a91d73b9ad0bf6d7b255f9812707708101a

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a9b318eb6e984407950f3480c652732e71a83125664348bf04895c643a450104
MD5 2146b5f2eb89997ffb9c3a291b672703
BLAKE2b-256 83d4cca6644d767517a80f6f5e97c3b9466ce384b377ad3595b49f6e3071530b

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 22301e1a9b3f21ee759c4d5346ca9ade29091c72532488a3097f4c1e933e44e3
MD5 ba75f833141bd5dc655b9bd47bb335b2
BLAKE2b-256 6b9cd45f1d3b95ea713b347ff820f091e368ffeff7b5d07f67502b29df50002d

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a5ea359615ac71f5910cf58661b183b32fca4cbd241b8382640e1e4fee11f439
MD5 bf4d853719bd5c304f8c5cbec06958eb
BLAKE2b-256 df04e3e25f102852c5af979d46f42e93c04d606b8d7a4215df3e1701f9d6e956

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 011d4a23c3e8362769671609db90e4da9e3797f9b4e6e0cc8c9b3d5c53761506
MD5 fabf76d5c673b26f99d9250b7d98d2dc
BLAKE2b-256 70ec3742c7d3a9dd63323123ca913f3cfe7a24b25f99ba0b25c97b87f9e49826

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9dd5b746a302e0e3ec4949a6f502df29af059f64a0ceca734666533bea711dda
MD5 e339c82708a69d95c0bcdb1da4caec94
BLAKE2b-256 384476c0da665aa24f83f1f969505e714d0154456504bdb0c586681ab1b021a7

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 5221bc5128c085350b3ea00b240157160fffe8ea2e52441f67d7b5705d58af1b
MD5 bbb7a46d7d2ddadde7cbc811f1689219
BLAKE2b-256 1cd8a992d61086e5bc181e45ef06e021dc965a738db770579929c0fe8f6f49d0

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 0fc275feea3e8173b24f74cc7560e094ce9155f7495ee0a70ac71c025bcc5353
MD5 254a646f6089ff2ec80e69b811df5ad3
BLAKE2b-256 74303f4a41968651611c82c64ade47ffe8bd623562b245b39d26eabe0d92cd39

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp310-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.11-cp310-none-win32.whl
  • Upload date:
  • Size: 673.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for berlin-0.3.11-cp310-none-win32.whl
Algorithm Hash digest
SHA256 11d53c5b6ce907a53ebbdc9f0f79334667a83d4206feaf74480873cad13e3757
MD5 184f4731e017fb642a600f8ffb8dd5ba
BLAKE2b-256 db9073995a7477950300947a09f968d288200c00d62a8be02b3740203ea7a2b0

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1320743f266295ac7382550c51c9145bf17c7b23a893c3349aa5c0e4f576ae40
MD5 b0de1bb4ed786742659576b59a74816b
BLAKE2b-256 236a42253faf1faf21be3b04c77e966e9498874f0e34985fd3efacc6ab71942a

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 de8a55a58975ab7316c7a370e15157c0e0e35dfe453b6f684a9449c9583d1b81
MD5 5ee08da469ea18b17b53a45ce0a59709
BLAKE2b-256 1a805f8941cc52935d47cb40127fb94ba58d8667c921b50b636b37651149d451

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 903205e3a358194d01638b3f79c482f0f88d6da97c5871e3e4fe68909a77d18b
MD5 b4cfc4a8e3168e15315bdeb9c5e18f5f
BLAKE2b-256 b07d0da84d49ec91c82b6f82550ff4effabee745d8b25689b13abae6621ec65e

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 f7ab77fd4892a18f3534835530f3af7975d342572b7b770c376f256e006fb8be
MD5 5e598d123b55c967d54d7a97d164323f
BLAKE2b-256 64dede61a20ce8131796a8c252c37566ed1899e3d72929e49374696ddc366b11

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7c29bd039a4f48aa6aa3ad761337334b95d75011434a5a687cc9583652369f9e
MD5 f194614ab629b3b804fdae1b4455550b
BLAKE2b-256 6de3d1494ff110bbc2022a31cd74805261269fe66bb6a63f8076e83f762fee14

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 feed4ad5941875aba940d8504be971dd8c7fbe0fd8a6d06b2b0d4f1b74206da8
MD5 ccd63351482666d48c49ed99bdc304db
BLAKE2b-256 e596cb9c502b4a1a50bf03beb070632df27090baf499f162b0dd937ced65d408

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 73c0bbcd3930a50bc22699aae5b374bb3de8d4fcb6d8cb9c69a3c5d6c45b67b6
MD5 68e59284f147c9c1167965d2a654f5de
BLAKE2b-256 5f8b812318094e70a6b8e9e6d9637da8d465e4377a63d564f4d4c7da505456b8

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e916f18342a27eb5d2409a2c91ce78ae93f7378be3624430c9eb40d3a5b19c14
MD5 2159d2b81fcb29116d67bc07161596ac
BLAKE2b-256 e36ed7dac220a4c1ddecfa1c56be256dd3ea9aefcd2ec75d4af3b4e8e9b664bf

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 7da291b19a73b8cb533a98f5155733959b15af8bb50bc02dd10dd7fe3a818541
MD5 4794b85c43b34136d24e404ed740c6aa
BLAKE2b-256 f67612b4ad1927492f0388f39921ec718f15ea0b08745be3659f64788ddee1aa

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp39-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.11-cp39-none-win32.whl
  • Upload date:
  • Size: 673.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for berlin-0.3.11-cp39-none-win32.whl
Algorithm Hash digest
SHA256 e5aaeb7f5f798b8ffb9cb040dd43084c386307e0d5dbf8b232a8aeef1bec8276
MD5 613c8048237e56fa535183084bef1ad1
BLAKE2b-256 d337e5f8ae7970843b4ae2617ab13554267d4f1098a28612d7d8f8c591428b52

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f2b17cd9db45c8063982e558206043fec6d80efdd82fba243a79b7b3860ca8e
MD5 ab01a415faf2429a0a3d2a9dbab41b5f
BLAKE2b-256 d2604edce2ce7f797a09a56dcb2d1acaf8323e213daa673c539308c36cc07a0a

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 1e3bf927802bd15171a6d2bf449f8e816d92964c0fdbbbba4d22195625b19d57
MD5 77d03507a35956e5a5027da97c126c8e
BLAKE2b-256 f4085119f85f2413186015d64ec4d3ab07c747d5814a42da29fa2c29467cb4fe

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8f0e6ab8e57ba17514c063b4686898b5c12e88228f2654d72d8cf0afefb1c244
MD5 84946e8b04288115ce705e6a7119abd9
BLAKE2b-256 3362552d5178c48c493c111ca8b8c607eb844747cee1271e5a4a15b2661f5d30

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 3f7190aed636dbae5953f262fb575dd5b6e7d3440f50934717ca27389eff1f1c
MD5 c37d78bd28295bfcb023c4c8888b81c0
BLAKE2b-256 06e6d7ac88de96604c5e2845a9e5ecc62743724627aef8ddcd7b87261b716dc6

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 778001d15a861426acba32248b698a34fa0337d04028dc7d94f67fc6f47dbe7e
MD5 ecceec2d174a5adf245122e7ed4a9431
BLAKE2b-256 b6cdeb89f4af59b3e3c5ee05a779992207e2361fa651b95daeaec82351f6727c

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a4d2eb0af13d9c8024bd6e3c41d8cc70904353edbe99452ec91edc10ac420607
MD5 1fd8348354969591e49760df24c647c1
BLAKE2b-256 d62734505ceb8317f3793b87a179095527aa505ee8f3ed96c22030f516c929f6

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 f09129c4640844209b5e7eb10feda1992e7dc3e32bb97c61c6c05ba4fe9192ef
MD5 8e4ace6ead2abf122e2b006050cd9a69
BLAKE2b-256 7c52317e4ab94c8cab14c74fab1cf129e8a76740d794634e88613d4dc192e1ec

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp38-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.11-cp38-none-win32.whl
  • Upload date:
  • Size: 671.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for berlin-0.3.11-cp38-none-win32.whl
Algorithm Hash digest
SHA256 653299d9748a2f77d5e6290109652a92e4378ef96fa30d578fc49e80d3a1d700
MD5 44408864fb277811564c515d509e1f87
BLAKE2b-256 31dadf166e42eed3fcc117622de16744e6618ba40ed775538a32b91a85208903

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 03af225aebb2886f985eb7ecf85576728ffa7940e8fecf6001902763f46d48e1
MD5 69c7cd11372e9e6308ca0d93c1f9d3f6
BLAKE2b-256 29b82018353e49371db3a287a40d0fb6c66f2c33efd1a9c3ae55bccf805ac6af

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6bd195547c810c9edc3c1bb84bb59357561a6cc395fa38edef9200294a85e65d
MD5 c778d79190271a1fc0d42f91c7d29d24
BLAKE2b-256 616e470fa7ef4659eb5713cfde42c8269fa9312634bed155d3f6e08760d253ca

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 cc341a1bc8ded046c8de24474051d07328fb3d30c6aea6f8edd135f7111354e2
MD5 9b476f0deea4a3c32b379b092f896bd9
BLAKE2b-256 fcdcf7e0fa2d6630da66a7ca68d5d0a945345365d377e1ab830a056147b666e1

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 a192d53309ef05d9531f7c0b1f67b134ecf92646c2141c825f6830dadd816a23
MD5 6ae1317fe871fdb544a19a4a4fed56a1
BLAKE2b-256 98c382df8029fcc682b194903c62273d563c53ba38e7f684950964e42123e1f8

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cb17f8d08cd958860302926f7011665f6342a3836139a8e2f424058378198e12
MD5 c7da0e87e5405fce82f9dd5e87f28caf
BLAKE2b-256 f44202a9dc5dcea49ec1a78bd14b475389e561f2b515f8a79b1d9139e12dcce2

See more details on using hashes here.

File details

Details for the file berlin-0.3.11-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.11-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 40bea81e7b06589b323137876b58ba00b3655893640e448b8fe406a825038c56
MD5 c016af98ee0d53da9b1e75823fbde82e
BLAKE2b-256 dda9906a8fc1a1480e73575d4d1f6b7341e55f37b94ae4b19b6a457fddcd455b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page