Skip to main content

Identify locations and tag them with UN-LOCODEs and ISO-3166-2 subdivisions.

Project description

berlin-rs

A Python/Rust microservice to identify locations and tag them with UN-LOCODEs and ISO-3166-2 subdivisions.

Getting started

To test the Rust API locally:

  make run

This will make an API available on port 3001. It serves simple requests of the form:

curl 'http://localhost:3001/berlin/search?q=house+prices+in+londo&state=gb' | jq

replacing localhost with the local endpoint (jq used for formatting).

This will return results of the form:

{
  "time": "32.46ms",
  "query": {
    "raw": "house prices in londo",
    "normalized": "house prices in londo",
    "stop_words": [
      "in"
    ],
    "codes": [],
    "exact_matches": [
      "house"
    ],
    "not_exact_matches": [
      "house prices",
      "prices in",
      "prices",
      "in londo",
      "londo"
    ],
    "state_filter": "gb",
    "limit": 1,
    "levenshtein_distance": 2
  },
  "results": [
    {
      "loc": {
        "encoding": "UN-LOCODE",
        "id": "gb:lon",
        "key": "UN-LOCODE-gb:lon",
        "names": [
          "london"
        ],
        "codes": [
          "lon"
        ],
        "state": [
          "gb",
          "united kingdom of great britain and northern ireland"
        ],
        "subdiv": [
          "lnd",
          "london, city of"
        ]
      },
      "score": 1346,
      "offset": {
        "start": 16,
        "end": 21
      }
    }
  ]
}

A Python wheel can also be built, using

  make wheels
  pip install build/wheels/berlin-0.1.0-xyz.whl

where xyz is your architecture.

Afterwards berlin should be functional inside a python shell/script. Example:

import berlin

db = berlin.load('../data')
loc = db.query('manchester population', 'gb', 1)[0];
print("location:", loc.words)

Description

Berlin is a location search engine which works on an in-memory collection of all UN Locodes, subdivisions and states (countries). Here are the main architectural highlights: On startup Berlin does a basic linguistic analysis of the locations: split names into words, remove diacritics, transliterate non-ASCII symbols to ASCII. For example, this allows us to find “Las Vegas” when searching for “vegas”. It employs string interning in order to both optimise memory usage and allow direct lookups for exact matches. If we can resolve (parts of) the search term to an existing interned string, it means that we have a location with this name in the database.

When the user submits the search term, Berlin first does a preliminary analysis of the search term: 1) split into words and pairs of words 2) try to identify the former as existing locations (can be resolved to existing interned strings) and tag them as “exact matches”. This creates many search terms from the original phrase. Pre-filtering step. Here we do three things 1) resolve exact matches by direct lookup in the names and codes tables 2) do a prefix search via a finite-state transducer 3) do a fuzzy search via a Levenshtein distance enabled finite-state transducer. The pre-filtered results are passed through a string-similarity evaluation algorithm and sorted by score. The results below a threshold are truncated. A graph is built from the locations found during the previous step in order to link them together hierarchically if possible. This further boosts some locations. For example, if the user searches for “new york UK” it will boost the location in Lincolnshire and it will show up higher than New York city in the USA. It is also possible to request search only in a specific country (which is enabled by default for the UK)

Berlin is able to find locations with a high degree of semantic accuracy. Speed is roughly equal to 10-15 ms per every non-matching word (or typo) + 1 ms for every exact match. A complex query of 8 words usually takes less than 100 ms and all of the realistic queries in our test suite take less than 50 ms, while the median is under 30 ms. Short queries containing an exact match (case insensitive) are faster than 10 ms.

The architecture would allow to easily implement as-you-type search suggestions in under 10 milliseconds if deemed desirable.

License

Prepared by Flax & Teal Limited for ONS Alpha project. Copyright © 2022, Office for National Statistics (https://www.ons.gov.uk)

Released under MIT license, see LICENSE for details.

License

Prepared by Flax & Teal Limited for ONS Alpha project. Copyright © 2022, Office for National Statistics (https://www.ons.gov.uk)

Released under MIT license, see LICENSE for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

berlin-0.3.13.tar.gz (20.9 kB view details)

Uploaded Source

Built Distributions

berlin-0.3.13-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

berlin-0.3.13-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

berlin-0.3.13-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

berlin-0.3.13-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

berlin-0.3.13-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

berlin-0.3.13-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

berlin-0.3.13-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

berlin-0.3.13-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

berlin-0.3.13-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

berlin-0.3.13-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

berlin-0.3.13-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

berlin-0.3.13-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

berlin-0.3.13-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

berlin-0.3.13-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

berlin-0.3.13-cp312-none-win_amd64.whl (675.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

berlin-0.3.13-cp312-none-win32.whl (665.1 kB view details)

Uploaded CPython 3.12 Windows x86

berlin-0.3.13-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

berlin-0.3.13-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

berlin-0.3.13-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

berlin-0.3.13-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

berlin-0.3.13-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

berlin-0.3.13-cp312-cp312-macosx_11_0_arm64.whl (823.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

berlin-0.3.13-cp312-cp312-macosx_10_12_x86_64.whl (837.7 kB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

berlin-0.3.13-cp311-none-win_amd64.whl (674.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

berlin-0.3.13-cp311-none-win32.whl (665.1 kB view details)

Uploaded CPython 3.11 Windows x86

berlin-0.3.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

berlin-0.3.13-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

berlin-0.3.13-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

berlin-0.3.13-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

berlin-0.3.13-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

berlin-0.3.13-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

berlin-0.3.13-cp311-cp311-macosx_11_0_arm64.whl (823.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

berlin-0.3.13-cp311-cp311-macosx_10_12_x86_64.whl (836.7 kB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

berlin-0.3.13-cp310-none-win_amd64.whl (674.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

berlin-0.3.13-cp310-none-win32.whl (665.1 kB view details)

Uploaded CPython 3.10 Windows x86

berlin-0.3.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

berlin-0.3.13-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

berlin-0.3.13-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

berlin-0.3.13-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

berlin-0.3.13-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

berlin-0.3.13-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

berlin-0.3.13-cp310-cp310-macosx_11_0_arm64.whl (823.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

berlin-0.3.13-cp310-cp310-macosx_10_12_x86_64.whl (836.7 kB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

berlin-0.3.13-cp39-none-win_amd64.whl (674.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

berlin-0.3.13-cp39-none-win32.whl (665.4 kB view details)

Uploaded CPython 3.9 Windows x86

berlin-0.3.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

berlin-0.3.13-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

berlin-0.3.13-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

berlin-0.3.13-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

berlin-0.3.13-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

berlin-0.3.13-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

berlin-0.3.13-cp38-none-win_amd64.whl (674.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

berlin-0.3.13-cp38-none-win32.whl (663.5 kB view details)

Uploaded CPython 3.8 Windows x86

berlin-0.3.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

berlin-0.3.13-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

berlin-0.3.13-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

berlin-0.3.13-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

berlin-0.3.13-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

berlin-0.3.13-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

File details

Details for the file berlin-0.3.13.tar.gz.

File metadata

  • Download URL: berlin-0.3.13.tar.gz
  • Upload date:
  • Size: 20.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.0

File hashes

Hashes for berlin-0.3.13.tar.gz
Algorithm Hash digest
SHA256 7b1f1d42b4797b1852b8d955d3eb51917933411c61bf80af40be72173b5ca8cc
MD5 ac742f3aa8e6a5340f7c1a926829761e
BLAKE2b-256 6d09bd07e1d3e6b2785bbca3c8d8faa33b66cb576b14fc3d1ae4c70327db9bd6

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 648df0484a2a145bb7bf64927fac3523d8c920c3a3d5d0ef78fb487ab03148af
MD5 e6cb55e0c7e3b74914e6c56a0e83449e
BLAKE2b-256 6dee0d79078a617801c4ae3c451ec5272885e3b73e71d9cb4d97dfc3226f91ce

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 79465baadd5ee3f2b192aefecdd25b841c0c7803a832577aef50db6a25faddfb
MD5 57a6a477bdecb1cba3f756db732d705a
BLAKE2b-256 e3d93013b0054ddb85228077ce20b2d4bb1642f22df3b3e0afdab9d1e6072617

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ba6944133f85c695e1c3ce57038a52bd188c9c8c387e0013d28cdba8b7df052
MD5 61bbe71662ca4a8dd467aa9bdb380bd6
BLAKE2b-256 970e3922e8b0d2edbec8efd0b57a0e4eb60ca1d69f9a724c5f81a0a1c3bbf793

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 abeb14967939780fbd28ba250a620237259ca175fe0321536dc2f0217b061037
MD5 e7ddadaea5a2361ec305177dc17717be
BLAKE2b-256 a31345fc1c860f1cf88dc2ed5318e455f861cc7b91212b857bc49c318ef3a3e4

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 03a3eda2cbb79db83130f1c5c2799afc066444689fed30741bbfe1ad671b616b
MD5 5dad9c60821bc0ce27ac65dc3e09203f
BLAKE2b-256 eb14e2ebc9ff55a84659993508abff27128d6d7454c35d2ecbef61af853f13f6

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 05415c50a2efda2378e01733a6e68c77a338cf32b3bc882514230fd9b4a8e811
MD5 4ef3afe6de4bbdfb3e4c017ab8d046b7
BLAKE2b-256 639ec4cb59f07dad4181ddbf335b16ae5095af5c0a101c4045f19e5dcc773ecd

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3dc35bc04b21dc37171f7d5ef017eb0d71e55e6c70552dc3ffde6f376a4ef1c1
MD5 b3904638a7c4ba7c28bef5122fd3e78d
BLAKE2b-256 c6bb7af76c514a39328d64d686465049504eac9d9f4c116ea5e8a75fe810e610

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 bbd56a50fcf013305fd16b641ad0a36c765cf052063422cae16e1beb162c6e48
MD5 2e966b93a52914e3cb80076dc60cb328
BLAKE2b-256 b9d5a0829420b949af7372aebcc6d2db9df9202cb0471a01007d9ec7d9f53e52

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 523e4c1e99fb2e0f2992959ce828e7aaaa7b0a28d034d6a5a97127b68af9ee4b
MD5 d45e7d7130876ca688d5762e76d44c30
BLAKE2b-256 7770dd448b90b52798e1ae3971dd74788ab9edf35b35b728454bb4d3b89af9ca

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 04c81c4c456276cdbec2bca441460b87c5eb3d02f4cf2e8e53ad6e71666fb002
MD5 54f7f713245e4825850946e93ef7be06
BLAKE2b-256 4bda4df538883792de039a5544ae851263ca2d20bc73cdbc2cb2726ed030d1ea

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 63d727ff009b175c293ce3815d0ce7fdfd8954e416bce4342556766ddd7d10bb
MD5 85780353c48281bc3a11a9ce921ed5ef
BLAKE2b-256 8139ae11bc31315b50b160371ea6a4fdd2505d3d9e9759abe02ed925bae8f4b6

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 00cce6e769a121f5c8f210f560636b641860ffc8002af7c507d1b5c856a0d95b
MD5 316f924c22ac72dd1fbd6275714cb46a
BLAKE2b-256 a1be14ee4fb95b33b6373de4e3217c42aacb16d6158ee3710ae52b9430151808

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6fd6e58cb5a265fab7e598b307f887b6132446e6c6a8b0795bdd4dd01aaf7941
MD5 783065338ff4a32c802c31760d9c50fb
BLAKE2b-256 fc54e9d75c1922fe1c089ec14a1f67e3defc3c525a15fec846594426679cfc8c

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 81fe7350fe2f95e876b114a09a1b7adecd768637b59b9f5a9feafb357255bb6a
MD5 b21219cfe5eada7908a34a4dc65f1841
BLAKE2b-256 d0a84616ddf5ca4086efe7f8b075e1732f24fe55feb7bf9d4cc5423197b76027

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 d39e6bedaa156f8cd0793fe94391ccbff9100ff007badf857179992e3063682d
MD5 5958ddab542fc0ed0f02810e98731e62
BLAKE2b-256 5cdd46b691565a130d741ed54953fcf6d84e483d79fa61d400260ef9d926d6df

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp312-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.13-cp312-none-win32.whl
  • Upload date:
  • Size: 665.1 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.0

File hashes

Hashes for berlin-0.3.13-cp312-none-win32.whl
Algorithm Hash digest
SHA256 ad6369e61c03b57a7866e622f925f75b48404bf9708bd3f03e7590a93b1b9d19
MD5 1916a00f4554563fe6380752970cab13
BLAKE2b-256 022bbcffd427b46a987e2d645318393955c2033312d0ffdd4c78b2b64fffa5c4

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7ea499facadd6779f5fb4945a0c04bfd547db927e2aa05409ced407b4dad1166
MD5 f2fcff884279ea56e1baa61897c49667
BLAKE2b-256 9b0af36e5fcdfd8b40cda335069e332a1eab019eb7dc0869b115ed2483859551

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 8b1b1b46aa09418272d5df96819d2351d8a3975cbaae4eb1a0c691f188b7243f
MD5 cd9b37e834915b1678a5505da59ccde3
BLAKE2b-256 888aeca87f7c3a3e0ac52247644dbbaf1f8fa21b014118d226700fd3c0e6eac4

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ed478792e8f79d1fac5ccfb6b66db233006034a9531cf51749b06edef3529bf6
MD5 096ab6b5180d9fb9d9a6de0959a323c2
BLAKE2b-256 ad8d0ad31d8960b2c59f80e62a6b31c84b6e1bee30f51eda8636f902db5bf673

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 59a729c379ad7c2fe26adb10a44bde040ee5928c71ac6e66fb1ae548fc4a500d
MD5 09ef30ba67e50422e40292515752c645
BLAKE2b-256 2c3b9e6039576de8d3df9cd3d042b68bff5e33fc14ebf48939275d3eb1b49d73

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3b76b759257e3d38e48a248ca4c739652a7bb801b40d19df7e0b14bc0407cae9
MD5 83e81382e0181452beef5e058122b3f4
BLAKE2b-256 268c91d9a87a9882c865e66059798e7878a981256556692e13f0e80f10b68b6a

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b2bae3e9b9fec1aa5ecec3972d633bc33d8f1ef2dbd1bf4e81cbf2926bcbe38b
MD5 352095055c75d9ef5e114b85644da8c0
BLAKE2b-256 b5c2b081cac15d48c27d5230f825630b88551cf2885490abd34ae23e7ca17379

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 8802b48f0a9d2353f7dfaf1412a90b0e799f534240b97edf121f98758d962009
MD5 ee379bc289fd63ea0c2868bf801dd4b3
BLAKE2b-256 c5af1c68aea8ac7735beaecf36786763989c03e9b10031eae9034e64c363139d

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 28fe5b7b7c6bf757bd5261d50f45f78b4bd808c790315cae567b3e00be0d2240
MD5 bd70cc5ec7583f081c95f1a729a85380
BLAKE2b-256 30a463f51a8c351612fd312de486d0d13d89d695fba780c4e75b9122441c6f28

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp311-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.13-cp311-none-win32.whl
  • Upload date:
  • Size: 665.1 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.0

File hashes

Hashes for berlin-0.3.13-cp311-none-win32.whl
Algorithm Hash digest
SHA256 5fb9c1827135b30a0e92eea1d6529676ba1135f64cb446d8a499114791fe8a03
MD5 f7d5cce3a8d7c1f213450ee680ae150c
BLAKE2b-256 c23d2da9f37e92b71c832aefd406e0f294228305f6a4e6bc3ac04cae54150157

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 82aa52bb576b1c4af37b4174c14ee5ec6689fe949420a38daba7a50b1e1bde94
MD5 68960945405aafdfd692b44aad93fd6f
BLAKE2b-256 800d2c45f47abfe767eb5debafbc1529332dbd66f9ae8e9dd002cc8d3590e073

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 13a7bc78925a36df85dab398c5358e3b8c79dc3cb85c76d3ad73d0da2ddd65b5
MD5 eebb86194ac4dceb7ba23fad971ce0cb
BLAKE2b-256 e2738a1712f576cc12a2e66f4b7d35c7576a2a6de590d9a9ac56e3df51471423

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 4a2df21565b60a91f85a3c634783129e91b425c95f3a03fc5b779940adb23001
MD5 83633e3de5dbfc733bc731777ee089f8
BLAKE2b-256 49fdd1fe111d16a8773f2fd0e8ef75a59dd1d64ca5a5fcf4daa51af7e48e538c

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 79ec681336744691110ffde625867d940f69ef292cb61c9c37fce3db9de490f1
MD5 702f96c6b8033d691ba3390926d6cc54
BLAKE2b-256 ae724c1adae8a203ba85c4cfc551abbfcc3f2cdea5f466985682108fd8c1b812

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5e5bcc63b7585b6903890bad88ec952655b66cd938be68245dcf8140904e960e
MD5 1098904b11e0ea7a389eb397b778f8e0
BLAKE2b-256 9be7aa34a8c255c6792c3a52a9f6a9485d8b18a84a2dcd03386e3b3d7b80fac3

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 96b5686238d620e92c2cb12306942e8bc04d0754ea7ff1bfebaeba8ba09291bb
MD5 44c1702593d155f7a290dea05547fe74
BLAKE2b-256 c74d731e43bcf0275149d9d5424ae21c142c29c2c6311171e57f6e4c8bd0f0a2

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d766799a9fb500c9170084c6d56dcdbae8fe209a377cd514f8470f757297b617
MD5 9db0c914e9e3bdc7f872953385019aa7
BLAKE2b-256 ea6b3a1686d766c93f5a7af2f71349fbbf0c5be88cd1452976b8ae06c2395518

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 70dcbd9260532c1792141bda443f5d1f111a3e2c57c59fd82d1e3dc9b5491cb6
MD5 79b493e1ff6f7b795cbf31d30d646e1b
BLAKE2b-256 a845eee1b681177220713eeb7641faab071813fb1714a2462e247283037b0c0d

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 04f75c5952e53427ac60614a4e9a17641f41e6824a6f9d097f17d4a5bb5c96f6
MD5 dd4193f33d9dfdfa7f955d88fe167017
BLAKE2b-256 78692a5d6532d3be5d45f2c411f842f3ab5283dd09c257ab98a7448de6432fb8

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp310-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.13-cp310-none-win32.whl
  • Upload date:
  • Size: 665.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.0

File hashes

Hashes for berlin-0.3.13-cp310-none-win32.whl
Algorithm Hash digest
SHA256 ecbae656168f5b99283210795dbd309525ef8aa7347f580aa93a82fe79c598e5
MD5 0dfdbf35a7e4af0e19d1ab2cc523bf8d
BLAKE2b-256 d56ca405cbe4329a55ba8c76cd6b4d42b110a7138ac3d4ba3215ab4cb9f02945

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3ea7a3e5ea3c18891181fd2a2a4cbacbe7d746c41342ce3f11ec7bf1d9151b7f
MD5 f305a669849b28babf9712cb0f66331b
BLAKE2b-256 af91eabaf57c4c078409039c77f7c0e476f772c0623b6655a09dd503a2d2e6e7

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ac98838f156e2c823af39f7424f4c2ef64a27d31efe1b9b918dfec5820595dec
MD5 d44152a91014d2c5e3fadb7e770ca5bd
BLAKE2b-256 9d4a25ab11e8b37d5ddb7fdce4368af3ff0ba009718ffb36e336c7a3a22f5a41

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 dfc241f524b6385f24454e8da582062cf6875c9514b0832c5c84c6b7c20e0d82
MD5 59b73bda2114291bdf102a3effa77585
BLAKE2b-256 570d00690941189dfecfad7427ef9d3f833f4ab09a3bc66da27fbcb7810a5302

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 bba2c8f37fe12452604d767af07087c590853f26fbb4de8410e1e6dd18964375
MD5 e17935696aae1a2adb285cbf204e5ccf
BLAKE2b-256 8e583b7ae0dbb78dca943932f43b68ec73de5e9136b7607c33e90e123afcf20a

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6b448ce0165df7e227c9470f8317d25e24fa00101b0c5086cd810b1e231d4125
MD5 a64a043ec657db0aed2210371ab24bed
BLAKE2b-256 054cb6573619d90746eefbb0e4c96ec577441f647ab42a99fff4dea925f5935a

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 41242e3e0b23a522ca059e4cc630d4216b347cf9a326e26ab8d7215ec4add40a
MD5 249767e62caa549c905368b373cd7c98
BLAKE2b-256 8aa00358147de0754ca1310058551fd3d7ba8e7266b18859fa62b3353b6ae8fd

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 231c58ba70a88b044baf2b6367bed122fd0ce74323f9fa88f789944a47e3321f
MD5 84a3186da7a6f1031f413d8b7d56fb9b
BLAKE2b-256 b32b028936648a6396b7fd4db3cfebee4287f13443b1226388003e59b2bc4b99

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 58cc15bb858eec5f82d9c30cec3cf06a2c91f1c4cf43b33f5f5bb792491655d1
MD5 38bc143ae795041269c77373db5b8b73
BLAKE2b-256 3cb2894cc7edb2a972d84f601b7a9ccb7f549a500832faa62f762edb11f04463

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 95d26a5b68a0022e55014023a0171f9743d8f2f5ce8e95e5aa9871ade62cb87c
MD5 4fb695cd25ec95a9941055d868312318
BLAKE2b-256 50b214a727eb6fbc58564e289cd70fb565c96288929da4535cbe41754026dda8

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp39-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.13-cp39-none-win32.whl
  • Upload date:
  • Size: 665.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.0

File hashes

Hashes for berlin-0.3.13-cp39-none-win32.whl
Algorithm Hash digest
SHA256 c3bd82de4e66dc4c202f9d9d7fd4e99b560d892111723f8b6dbcd97c8fae4ff8
MD5 9ca6c88d13dfd07c9a55f10b480fff83
BLAKE2b-256 e0be48a80aadf514bb24dbf1f6fe1da233e04970913c5860db5cf067c1175d3e

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 71e09da03513aaee72b4a4e122242debe655bd9a9ae4783caf4e77e79e4e5831
MD5 2fb099c29ee859bc3b38bf70c2854c45
BLAKE2b-256 9f85d3c1c45ebea0e9c117790ea07ca2fe025aaf4ce8518113fcc6f4c1c8267b

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a5c7ea4dfa0f480a8bfac866f1fa92c344cafc05e534075057012140e2ebfcda
MD5 ac41be570e80e1492ebe9b8875947747
BLAKE2b-256 2a90cacf78c02957dff286debfee89760382eb795b82524bec87e0a8924805fd

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 949af9b0cb0435072888d19b72908eecf14557c0da0154a66079ccb688af11a2
MD5 44301c4fc4918a1c3d8615518bcbc5f1
BLAKE2b-256 28803353f8fdb0a059ecb9c9088adb13b94b39a54d8ce7e205fdccc8d1e736e6

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 5211485ecec46506118e90a658aaa10ad398feee82caa48c3a21e24cc1536e9f
MD5 cfa096e3b288957d0ac0a54e377aa1a8
BLAKE2b-256 103e39a4c30adb51e80c1f90ff6878377eb5a7ed312624d41ecdb4d5e8cea853

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c6c5c28497637e7625e93fecbb1cfb2daba797c7ed56e26e968b6b167d1bbb6b
MD5 ceb8ce0cf6a19aab920e2449172964af
BLAKE2b-256 7f142a26ebb429654fe28b5877e1381b9a107d83a9eab8247fcf99770ee6c094

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e8f289e555653bca85f6df62bd7c773a04a7eee658cc7d9b3227cd4b7ad70206
MD5 b5a563285773c5ae005b57ba35f1defa
BLAKE2b-256 3229d5fe0d00eb91fc8ad4d5fab61b8a63f6929dfec17801d5d64186479038de

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 cc9b3b64abc430c6c038c31f71c5fcd8dc184a3b515dfb8e3c48264d7ca171d5
MD5 7e5ff6f76c3c4a02fa83e9ab7f77ab39
BLAKE2b-256 e4e79058296b3a8b61399547770a76df6833e4b0e19d9478af5912425147a984

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp38-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.13-cp38-none-win32.whl
  • Upload date:
  • Size: 663.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.0

File hashes

Hashes for berlin-0.3.13-cp38-none-win32.whl
Algorithm Hash digest
SHA256 8e07a51ad972c0aef2aab3c5c94e2d91467339fd0a88992d69df7a5c2e942b5f
MD5 6e7f852f98a1d69552081a5914bb9fae
BLAKE2b-256 aac93bef55f784bd05687fd7bc360fae8bf7acf3746a0f627e8aa6dbcb0aa8ee

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bd3f094003458d58164fd2b147dd78e2f008cd5800bf1689041adaaf1f3db44a
MD5 b95fb61343041ba21236fdb3613f0be1
BLAKE2b-256 7e4cd5c0da8385ff512c18809c498c045c30acbf2064d7cdf0478c5d5b4351fb

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 109b55fbe2dcb1e3427e5359d252caffb8f0b6b266ed93ef104966e4cc79afe6
MD5 f14063b25f14241e3d36cdac2f504cce
BLAKE2b-256 a47e20525136f3f9ad7d4c69da70ebbffa4f8d8a52ebe7a4504ac2e6d9f07cf3

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2f32678f4d3e9578ec85d76d0d95304f9617b4d9001aeb58d819a6f42793ca70
MD5 c9d88c34260879f9e3c8ce6a94ee2e5c
BLAKE2b-256 c63583ed0cfc74d83f32f7ee86b83f24520f590da052163e7159542a760180e7

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 f8f344dd004cdca04a4d0a40fc74dbaa7d0bf4677bbaa436fb22a1e3e2d3a2c9
MD5 e5ce074874634ff7f8f88cc2a8a8e143
BLAKE2b-256 95128185d7e5dc45966cba753dd6dbad70641466b90c896cc119dfc57bb7ad16

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a233ebf6040303485018e2f170587bf155c14e56bf75d074c21ec8c2b5487a02
MD5 88f45971fa3765a6dd3554f6c79b107d
BLAKE2b-256 c7a387ac080b0d544c992dd37149db0dd92e67ecf799d687e0d5b4f1a59a522f

See more details on using hashes here.

File details

Details for the file berlin-0.3.13-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.13-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b17c1d2dea3e23480a159b72fe23fcfbdfc94ca405d314c26ac4ed292bc4e451
MD5 ea27029960c11a2ec99f6e59cda829a3
BLAKE2b-256 468941307bd9beded846da6c0a1a71b1914bff2bb046d79e44a076644ba02e4a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page