Skip to main content

Identify locations and tag them with UN-LOCODEs and ISO-3166-2 subdivisions.

Project description

berlin-rs

A Python/Rust microservice to identify locations and tag them with UN-LOCODEs and ISO-3166-2 subdivisions.

Getting started

To test the Rust API locally:

  make run

This will make an API available on port 3001. It serves simple requests of the form:

curl 'http://localhost:3001/berlin/search?q=house+prices+in+londo&state=gb' | jq

replacing localhost with the local endpoint (jq used for formatting).

This will return results of the form:

{
  "time": "32.46ms",
  "query": {
    "raw": "house prices in londo",
    "normalized": "house prices in londo",
    "stop_words": [
      "in"
    ],
    "codes": [],
    "exact_matches": [
      "house"
    ],
    "not_exact_matches": [
      "house prices",
      "prices in",
      "prices",
      "in londo",
      "londo"
    ],
    "state_filter": "gb",
    "limit": 1,
    "levenshtein_distance": 2
  },
  "results": [
    {
      "loc": {
        "encoding": "UN-LOCODE",
        "id": "gb:lon",
        "key": "UN-LOCODE-gb:lon",
        "names": [
          "london"
        ],
        "codes": [
          "lon"
        ],
        "state": [
          "gb",
          "united kingdom of great britain and northern ireland"
        ],
        "subdiv": [
          "lnd",
          "london, city of"
        ]
      },
      "score": 1346,
      "offset": {
        "start": 16,
        "end": 21
      }
    }
  ]
}

A Python wheel can also be built, using

  make wheels
  pip install build/wheels/berlin-0.1.0-xyz.whl

where xyz is your architecture.

Afterwards berlin should be functional inside a python shell/script. Example:

import berlin

db = berlin.load('../data')
loc = db.query('manchester population', 'gb', 1)[0];
print("location:", loc.words)

Description

Berlin is a location search engine which works on an in-memory collection of all UN Locodes, subdivisions and states (countries). Here are the main architectural highlights: On startup Berlin does a basic linguistic analysis of the locations: split names into words, remove diacritics, transliterate non-ASCII symbols to ASCII. For example, this allows us to find “Las Vegas” when searching for “vegas”. It employs string interning in order to both optimise memory usage and allow direct lookups for exact matches. If we can resolve (parts of) the search term to an existing interned string, it means that we have a location with this name in the database.

When the user submits the search term, Berlin first does a preliminary analysis of the search term: 1) split into words and pairs of words 2) try to identify the former as existing locations (can be resolved to existing interned strings) and tag them as “exact matches”. This creates many search terms from the original phrase. Pre-filtering step. Here we do three things 1) resolve exact matches by direct lookup in the names and codes tables 2) do a prefix search via a finite-state transducer 3) do a fuzzy search via a Levenshtein distance enabled finite-state transducer. The pre-filtered results are passed through a string-similarity evaluation algorithm and sorted by score. The results below a threshold are truncated. A graph is built from the locations found during the previous step in order to link them together hierarchically if possible. This further boosts some locations. For example, if the user searches for “new york UK” it will boost the location in Lincolnshire and it will show up higher than New York city in the USA. It is also possible to request search only in a specific country (which is enabled by default for the UK)

Berlin is able to find locations with a high degree of semantic accuracy. Speed is roughly equal to 10-15 ms per every non-matching word (or typo) + 1 ms for every exact match. A complex query of 8 words usually takes less than 100 ms and all of the realistic queries in our test suite take less than 50 ms, while the median is under 30 ms. Short queries containing an exact match (case insensitive) are faster than 10 ms.

The architecture would allow to easily implement as-you-type search suggestions in under 10 milliseconds if deemed desirable.

License

Prepared by Flax & Teal Limited for ONS Alpha project. Copyright © 2022, Office for National Statistics (https://www.ons.gov.uk)

Released under MIT license, see LICENSE for details.

License

Prepared by Flax & Teal Limited for ONS Alpha project. Copyright © 2022, Office for National Statistics (https://www.ons.gov.uk)

Released under MIT license, see LICENSE for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

berlin-0.3.14.tar.gz (21.0 kB view details)

Uploaded Source

Built Distributions

berlin-0.3.14-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

berlin-0.3.14-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

berlin-0.3.14-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

berlin-0.3.14-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

berlin-0.3.14-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

berlin-0.3.14-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

berlin-0.3.14-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

berlin-0.3.14-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

berlin-0.3.14-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

berlin-0.3.14-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

berlin-0.3.14-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

berlin-0.3.14-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

berlin-0.3.14-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

berlin-0.3.14-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

berlin-0.3.14-cp312-none-win_amd64.whl (689.2 kB view details)

Uploaded CPython 3.12 Windows x86-64

berlin-0.3.14-cp312-none-win32.whl (679.6 kB view details)

Uploaded CPython 3.12 Windows x86

berlin-0.3.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

berlin-0.3.14-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

berlin-0.3.14-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

berlin-0.3.14-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

berlin-0.3.14-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

berlin-0.3.14-cp312-cp312-macosx_11_0_arm64.whl (838.3 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

berlin-0.3.14-cp312-cp312-macosx_10_12_x86_64.whl (853.8 kB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

berlin-0.3.14-cp311-none-win_amd64.whl (689.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

berlin-0.3.14-cp311-none-win32.whl (679.7 kB view details)

Uploaded CPython 3.11 Windows x86

berlin-0.3.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

berlin-0.3.14-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

berlin-0.3.14-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

berlin-0.3.14-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

berlin-0.3.14-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

berlin-0.3.14-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

berlin-0.3.14-cp311-cp311-macosx_11_0_arm64.whl (836.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

berlin-0.3.14-cp311-cp311-macosx_10_12_x86_64.whl (852.6 kB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

berlin-0.3.14-cp310-none-win_amd64.whl (689.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

berlin-0.3.14-cp310-none-win32.whl (679.7 kB view details)

Uploaded CPython 3.10 Windows x86

berlin-0.3.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

berlin-0.3.14-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

berlin-0.3.14-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

berlin-0.3.14-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

berlin-0.3.14-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

berlin-0.3.14-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

berlin-0.3.14-cp310-cp310-macosx_11_0_arm64.whl (836.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

berlin-0.3.14-cp310-cp310-macosx_10_12_x86_64.whl (852.7 kB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

berlin-0.3.14-cp39-none-win_amd64.whl (689.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

berlin-0.3.14-cp39-none-win32.whl (679.8 kB view details)

Uploaded CPython 3.9 Windows x86

berlin-0.3.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

berlin-0.3.14-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

berlin-0.3.14-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

berlin-0.3.14-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

berlin-0.3.14-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

berlin-0.3.14-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

berlin-0.3.14-cp38-none-win_amd64.whl (689.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

berlin-0.3.14-cp38-none-win32.whl (678.3 kB view details)

Uploaded CPython 3.8 Windows x86

berlin-0.3.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

berlin-0.3.14-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

berlin-0.3.14-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

berlin-0.3.14-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

berlin-0.3.14-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

berlin-0.3.14-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

File details

Details for the file berlin-0.3.14.tar.gz.

File metadata

  • Download URL: berlin-0.3.14.tar.gz
  • Upload date:
  • Size: 21.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for berlin-0.3.14.tar.gz
Algorithm Hash digest
SHA256 516d096e153d90bbec31b6d77b78c0c4afadad72f2abce2edb9e2c1af49827c3
MD5 0d3390ee934a81bb20b9a6f12769c3de
BLAKE2b-256 73a0f565df861ba8b77c58a9cff9bb11554c3051e0415e88bb4b960b5bbb0e83

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 223429ceea60d5bd2d5291a91c2b5c551e8d20017a77988acc5da5a299406971
MD5 f667318abb4ee32009619f8a2f1d8d44
BLAKE2b-256 484897a06b139d15d99bbd5358876dca032783414dae5de1de256cc77f73e9e6

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 fd5fd07bc13bf80610e9e4b0b0d55761aaa8319def3aab9ad6eb90106b20368b
MD5 df03a42aad055e8d3b94009bc2f4df2e
BLAKE2b-256 41652bad4f7081d06e7ca67c47067b2f42648f3d2d33cf4b2488cee2acfb9a5b

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2f11be44674ef64345b86af8433431c053d434b346604134461592336b1ccfa2
MD5 85ecb935a1a1cb36bf3a2959961c3749
BLAKE2b-256 3fdfc33c6ffb77f4a36280ac7ea912ec132b8db0e256a1279a37e4e7b43217bb

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 7a6ce85cb1fffec6e40186be1bf6bdd91a6256b16b09fbb89301095b7c2d5e9a
MD5 e8b5cadf8f6cd68bebb15ca9998f0322
BLAKE2b-256 8dad635f3a66d130b0af0f7a474795625d1ddb7190b6b730b75a4c10459f6ae2

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 afedc4498b34af9b85f0f09377edc0770a51bbb59ffaab40ce3e040d5854a1d9
MD5 5822b15213add0d0717d8fdb6f1e9501
BLAKE2b-256 1f0b4faaf95444fc9164621fd46a8d15e6a67c753474c44f5f2e39fff5fbcdb4

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 17bedc07859ee525b70d3aeb9b2144fd7e8d4f15f7b2cdfae2790b38171382e5
MD5 a014663db833b621a4b6885d94e388e0
BLAKE2b-256 450823821bddfad38c1583351e477f30f435465fa63d7cbec5cb1ce64411e999

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 feb432abe9aacafa9547926b0a83b8096a5b76fb09bd1af87fdb1c7b15e22d5b
MD5 5f4e328ccb1f4482808717223b1db138
BLAKE2b-256 e0820917e86108ea60f0c6572696774d986cbf3d8ea0a3a6276653fa237fc1e5

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 02fd47fccea2480b1b4a4f4bb6c69751beaf1a3537047b16999cd2b278a6ea32
MD5 be86c0030ba01c3cc6999fe1b3ac6f0e
BLAKE2b-256 c6031129080cf81bb79f4892ee94b2791085914ede548bf67f00c3093ddb124e

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2241aa0cbe5d3f002b1d4f1d1fff6241fc70c2d868beaafce580f34e334a9aea
MD5 bfea320c213cfe8affd2f37212ccbc80
BLAKE2b-256 1e6f4803172862843d29220214c5c860150394221d4c8bacffd1b2bd85f18cee

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c52d8492313f02d9cde96fac8598107f247b362ef0e86c365dabed2d3f81cadd
MD5 0b5743424404628fabbf91afd464cecc
BLAKE2b-256 0b4c9857def004ffa0b48ca1c9ab5526305d5cfb0f1f5a50477bdc0648005eb3

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7331765651c6345bc2c726d7c57f67544bd88150c2a559991e3d02985b956c60
MD5 0b53aa2551557d7acd057e4a3645f69f
BLAKE2b-256 b31a6cc1ee1b51c73fc7c99fe843149ae8e35c96883e2b730c0b4f6820f26b3e

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 0edb55baa2025b4eb04b065606b57f5a26e2acb357cde258649e96759444c921
MD5 6520e26d06f87269722b2994da1b80e7
BLAKE2b-256 4c678f7820221387a196f15b0b2da4e80b838b1988c1a4a61adec9c8382468b6

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b9579b4db1938ae665720fc5475add32be233c20482145654b945eafa4228c4f
MD5 0f0207d08922032c9767e708a3529bdb
BLAKE2b-256 b2d3d3fb8fd742de0849638f61e3b83bd1eedc2b322e8091400c8a1c94c14090

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 bcf2b4ce53075e80f1f570e3161673de5655cdf2b636631472128a8778983a3e
MD5 9432b42b428845e28255178ddf90016a
BLAKE2b-256 2fce60c76c5e8f3d6441edf58daa2e8b618595c4f612f01c2d32dcf6d85f8b9c

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 c93ebe74754efc72c6b86cf6f55b98eede7c9054f17d16a9a930eeb58b41e525
MD5 b7babd3ba842d704088bac77f66f3ff3
BLAKE2b-256 ac943fee70de81e0894a3a36b7a848b46dcc83c7192adee35a6dc0ba22f05e70

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp312-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.14-cp312-none-win32.whl
  • Upload date:
  • Size: 679.6 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for berlin-0.3.14-cp312-none-win32.whl
Algorithm Hash digest
SHA256 59568442d188db1308d50bfe6efd3a43e15502f256f490956e689796dfd44070
MD5 5b14c81d499ab40f82f7919b0bf006b6
BLAKE2b-256 837865a57ba0d50959bb5edfbc137f41f23e41461dbc3134110b0093a7b6bee3

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4572d5abd7393cf857d3d800879ed0da0babb6b437c19f149e4e725c8a5e5962
MD5 b376863b92b6af0324406c2514c65e91
BLAKE2b-256 58e00cd45728ccb47867e55b56d056c5450656c18057cdcd9933e3814b87df51

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 9a4631cbeb35396710f626fa0758939410ad6fea7328afd98ab4c3bb40b6c159
MD5 ae4ecff10cc452f901dabb5b4f69c475
BLAKE2b-256 d27fa1696dcd8c5b149c55f403b52921f0cbc915e0920e73edfcd2e5e66a416b

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c391d1003e71d48a87030512d9aac2d6df56bbfd5539b58dabb50995579256f5
MD5 6926054091c6f7faf681c7a67dab8618
BLAKE2b-256 62adc1a4b0db304105b430e9f14d2b86d16949540e421691b7cdec7a57101afb

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d48a2ff4f5b05274145cb206f1145a0305eac81c00b27290ffa72e18dde5e8a6
MD5 aac057eddebdec437390bb3ed9eb55a3
BLAKE2b-256 221692c2bc9e0db14d9de7c289ec53082491fd65f7ca378f69ca99049f4f92df

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6e57e23513a888b06884d1f255a71e8507eb64c909372135ee23019fc107a445
MD5 4771b13f10b85897cb9332c1f8a9f31d
BLAKE2b-256 bbce0ed7804047477677c953e9763320bd01debc70f7c90862fc5bf1e10c0935

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6bdb81810adef8bf080b12eb4c62858b3fe855d195358acf38c25a9fdbf239ca
MD5 b364a40ac73cffaa90545e971112e09b
BLAKE2b-256 e81532de53310ef2f56d9605036d213d6c055da728fa7c18168d7d4556d969f6

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 5f0bcff0dd1fd47cc3caf4509f528233d5524cca2dfde12155948d90a03c2d9e
MD5 735e3673f61412bbc63b4e8e09a1101b
BLAKE2b-256 f390b3a1b92bf77cf4ff9bde3a859034261bd3986b014349d216970366714d39

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 4b329c491dcf29af9b14b580de8a9d5eda24488fbb7989400e4c7a4dd77c89e5
MD5 5752c3c0ff101e4de1e309fb5274422c
BLAKE2b-256 e8d9cbb02b8634e8bc4aa5f866664073ef48ae9d92dbcfbfcd765b59edf7b987

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp311-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.14-cp311-none-win32.whl
  • Upload date:
  • Size: 679.7 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for berlin-0.3.14-cp311-none-win32.whl
Algorithm Hash digest
SHA256 825a3a3673a2d111b1006bfabf74c1ef80da07abd30797b0f4cb4fefff61c16c
MD5 dd33b6977b71e5b724cfd6782d608fb0
BLAKE2b-256 889114d6b5a550ebc6f3c27e199d5033bd455f3594ed84011595833df757ba4b

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2cf1f684d78b006acf2b3099041f33b9e57231fe8f4dd971b227a14cc4172e47
MD5 cc7b1b76c60b35a5a6086e059d4365d3
BLAKE2b-256 d85cd86a772182abfac39d40b58d7690918fab9252d6663e7ef337de5a33b2f0

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 fbac9a57cf07e797ed0ca0fe370aa6422386b255cc40514423d34a12313550e3
MD5 7ab5e91e488aefb3d3e7eb30fef028cf
BLAKE2b-256 f871ab476b12dcfa3383285a00896f0f5a6afd46131ec1744006605314f96a8a

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b47c0443e241fecd07e8c71c10ac318d4029616667443bf042b5fad2b26629ad
MD5 e91b7e76ddd5140aedbc3bf3d7020044
BLAKE2b-256 54f947bd3256df328ad7d0b8706464030f719c030ce3d705007b4875b039e44e

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 576fd1428c7a46a41fa2fed6137ff65ed1bcfbe2352beffb29c6e26827027763
MD5 19a14b8c8fea3ca80bdc5fee0280ccfd
BLAKE2b-256 8c3c74b0f5a66feebccf2866b3c0990a3d9b076ab574def34663d8016959ee9a

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0abd8fc53619ef033c36692cdbb95f463450f29021e9eec76ed78a9355be8b17
MD5 8279a374fcb09375fb04857cc2f82916
BLAKE2b-256 4474a5fa0ef2e05febf427894058719fe6aa467a9deeddc7aacd54c755c71d09

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 52cd3f666d589a5fdc077cf1a5380e01569626a248f18085fa0991a9715e9ae3
MD5 85f69212106dd62c3cf3548bb817b55c
BLAKE2b-256 e210a478c45e7b36fb1cd5ec362c7d57d617ebede8442f1a8720582a7f4f756d

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 535571d5e7b35712a7d4075bf985f2590c6a9f6728ab52ec8d509ffe46076746
MD5 f279787469e391ca3d550ee413ddc6e1
BLAKE2b-256 1b0a08bd472d30f9ea35c127e37c3fc07dc9893b46645e69a959cfb9739383db

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 9974b1eb796796226bf618fb434736a2fe6a83e9d32ac6c0547d98ae53008940
MD5 4a3c4c207aa43c566f359bff622586e6
BLAKE2b-256 b5a73d57815e4eb2d6c563d1190e8bb7fb2fc3bc1bccc44c0789d3ddfc00a9fc

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 e99c69c996a63328d52837a6fe05b7eefc6bd962164d5db03a5d07717014a0ae
MD5 57edf36d322ea214f8b8e783e7aa8b12
BLAKE2b-256 3fe0f63f041282d792f84fd180a62773c55d68d18381912fc4f3880a0e06e95c

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp310-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.14-cp310-none-win32.whl
  • Upload date:
  • Size: 679.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for berlin-0.3.14-cp310-none-win32.whl
Algorithm Hash digest
SHA256 d34f471efe8f4434be214d499f3e099ac3ea639dde223928ec61b53d64fcf616
MD5 8f1462f5f65b4de93158f509a19e2fa5
BLAKE2b-256 03af835b6e36263b917047944a21387002830f38cee534660a47c875d9d34563

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 24e4ca5bd9e24341b1d9ff3b794320b88d5c8d82e197b4280fbf39aeeeb45be8
MD5 6e4a32c468478912ec32d05c5bd5c8ec
BLAKE2b-256 45c780f44f1add181b0e9533fc5c09ae86d5b9847139fd8d4cd5eeac88aa6534

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 8f517cb0643376a33bd6d7363a4ee06c2260a0d4178070b2faaf985695578101
MD5 53045746d2dca23feefce6d59247865a
BLAKE2b-256 9bc2d9d2fb248b76f3afa767b1ae3ba21666155a84f763e7715594dd8727068c

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8c7e572dd7a70df41acd1ee19911b1eef8817d144de8aa8aa6b224fc7111fa58
MD5 03b4d8a19aa6ae20f75725432b3d6d3c
BLAKE2b-256 f13d867a3896ab3de51fe9e6f5a320e4fd8e389482372d87c90536464c6e1769

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 17e702d617bd2ff517b7aa84b6266b908eb679ec15c6e6756eb2d0c6ef0fd738
MD5 53ebdc2a63699984a86c195c14776e18
BLAKE2b-256 16363a7a8db129444cee24cdfb49a0c7dd2974872cd43d8f9846b404a462254f

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c10ae21735ea0cd784d5457dcd6e38bdb071a9ca5eb62d1289dea3bf756789bd
MD5 77175559e0613cb830455a15da155a17
BLAKE2b-256 e9da6dbd86c45fd4020e74b36536e69eac4759bb545350d0ae060b32bf5340b8

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 486ec0ed15e47cf6d197d5c59f0d0790fb8b44b8373f7919d3c4d03f5786db10
MD5 d993034085c8e6cc56f1dee769a2413b
BLAKE2b-256 20e81ec8de1afb6d288ee0d4bdf9cc0a34c2b3281277a7c7ae88401ff1d4a636

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 36b74e8ef9b43e7ac022ab2c546c22c464f85ac87f8b0953ec0223cd7efcc240
MD5 c76c6bf7c643a47b7d238c45aa56ed26
BLAKE2b-256 0e6825aceedc04a84d586e258722cf453e7843e691d848c7aaf4d407af8d21ae

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 105a43f5bd82f55c8615650aaa1e6146af66e8b59c5f9ebb5998b31fb989d03a
MD5 5c563d30ddd1ff13ae0440df7fcd9950
BLAKE2b-256 ba5873d2c43db8cadcedc738519617791359330f448cd47ae916285757abb409

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 8f4750b0509ca2ac50102467d6aef8ab3fb96460475c73b9a6840a3e80d9472b
MD5 21fb707f5319fe2a0f9054a45fbb4041
BLAKE2b-256 ae508195280cf11f98b21a1d2b2094432995a088c9b9ddaa4132728b91f6c420

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp39-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.14-cp39-none-win32.whl
  • Upload date:
  • Size: 679.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for berlin-0.3.14-cp39-none-win32.whl
Algorithm Hash digest
SHA256 00e5a367d98ba69c4ef6d209d49a2fe339ac8fbb8ca36ea89caf84f29afb098c
MD5 82e78d7b4f03bcbc9b150ac18465dac0
BLAKE2b-256 97f5f1f141646b958c25e5d152735bc9ccd539f9619eb160b0576f57acedbaef

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ca87bb719e25f15a433092b19d96509a3e8544c2336ca4259fd4f76730a95673
MD5 ecd86d5d5cabd387699248b9ac893d7d
BLAKE2b-256 9cd66a377f3355f9d8972f972d3303ecad3b3c29b6fa28716ff01fdd6a6df255

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f22f7aab52f244313c962acea17c7720e020843a22929ab4655b44b7cb701af8
MD5 4c9868174704b2af2f169f6869b6d6e3
BLAKE2b-256 3a2a1eb69d20003207cb6451922d37f33b153384def9a5e5f48b84075e13c7d8

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3235161334a0919af46cb26db36b95c2c21104a029ec6d666ddfdd0bd567387b
MD5 ad7e781640f4aed011969f03567f4f52
BLAKE2b-256 edd0ea1d52a5be749f7bffa1845abd966cf3fe25b35a9ff059e8586951022a27

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 9eb23e3311d2d3eec3c563c1f2562b1450620c9826dc5d7d79935fef4bf25c58
MD5 7eaff17b1f9f47809eb45cfc8db269de
BLAKE2b-256 31f99880404785c8c3d8808603132a4dba59471e4b2d23e595ca219178722c60

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 96dc1d917b129fc1637e4396d20fc76d48b83272166f9acdea80bbeba8058142
MD5 70c8509114a6d007d7e8b911e69b3a2f
BLAKE2b-256 a8c423315018ad15ea8477d714e254925538db175d6a4c18fa1968487201a17f

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 154ac1d630ba2e337a2941788c31f2a14d73b1e5ef9f186e16861cef8e6384f4
MD5 8f5d9cafaa81a56b55a505b0af37c931
BLAKE2b-256 aa42a58ee533934069646d64b793d315a3e67ad0ce61c4c885e1c71dd4800722

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 0ac7b3b736c57daf7b48e48523c0064f22381f6694b8647eafaaca77e5251b40
MD5 57144dc001469ee12f4b138286e19976
BLAKE2b-256 470e3584f2fd548671ef85c18767643b31a931c8492f67a7d6bccee40cb739cf

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp38-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.14-cp38-none-win32.whl
  • Upload date:
  • Size: 678.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for berlin-0.3.14-cp38-none-win32.whl
Algorithm Hash digest
SHA256 f70547a4cf431c565478a23078be99306b10b670631a19b8822c5d2e76539909
MD5 374f1c7a2b629cba28a710e4f5bac75a
BLAKE2b-256 d2b9bd89d07f60c57e7f672c70db060697c5656c6b12a8fa80ca23ab5a70106c

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 45ba0e438e497ab8907322b28987931b30db31b41ce26e078609a67c2bbf5d73
MD5 46445874aee66580ed407eb91d57169a
BLAKE2b-256 40495e75ec2a59630afcd2a489cdab85b5ead30cc6fe1b7419d06436372013ee

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 9f19bf5d4c99cf4ac05ad587d6f50e21217ca2520459c267b9b97ba5337e3ff0
MD5 3c0a553b840c0f6d8388e7a1b7e2d707
BLAKE2b-256 43b57209b92cf8b79dfba27f227eef868606d166db06ce3daa41cbcf3798327d

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 cd9e786f57c8577e9a11a9b28b13e73569b2f1cf8e64986b50c4cc0842036490
MD5 08d55af7c9ad319a876190cd9889136b
BLAKE2b-256 8b54c845d630d7e1bddd57f8559c1f43a12810a3ccb9b21ef44191d8d917824b

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 0d942370af5229d6798ed898ce80214a7e9be99e7334bef75e1ff67a2d8d3885
MD5 a3e0306ffcef9bd8380144fdb5fffcba
BLAKE2b-256 e52d50d95eecd55b7901ddfdf59d9ba816fb281b882fa0bfef724d895f621ef6

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e4b728042ae8e6c7038879a0090bc324bd63ce11d16a25fc852fa14c64e7fb20
MD5 e77648945fa480e021050a51a8e2be6b
BLAKE2b-256 5aa765570420e259096fc5d601b82123ad91d7892f3aba580c741a8d0419a8ae

See more details on using hashes here.

File details

Details for the file berlin-0.3.14-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.14-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9960ceb94cda17a10e5bad2813319a4ccdbfe944efde0f0784e17e76026299d0
MD5 1d1a8789795006d6b27baeec5546ab84
BLAKE2b-256 18cd9a59ad1e46278cfa39a3e1ac116b3d729cb86b62d5ff1ab69a8a9003f3fe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page