Skip to main content

Identify locations and tag them with UN-LOCODEs and ISO-3166-2 subdivisions.

Project description

berlin-rs

A Python/Rust microservice to identify locations and tag them with UN-LOCODEs and ISO-3166-2 subdivisions.

Getting started

To test the Rust API locally:

  make run

This will make an API available on port 3001. It serves simple requests of the form:

curl 'http://localhost:3001/berlin/search?q=house+prices+in+londo&state=gb' | jq

replacing localhost with the local endpoint (jq used for formatting).

This will return results of the form:

{
  "time": "32.46ms",
  "query": {
    "raw": "house prices in londo",
    "normalized": "house prices in londo",
    "stop_words": [
      "in"
    ],
    "codes": [],
    "exact_matches": [
      "house"
    ],
    "not_exact_matches": [
      "house prices",
      "prices in",
      "prices",
      "in londo",
      "londo"
    ],
    "state_filter": "gb",
    "limit": 1,
    "levenshtein_distance": 2
  },
  "results": [
    {
      "loc": {
        "encoding": "UN-LOCODE",
        "id": "gb:lon",
        "key": "UN-LOCODE-gb:lon",
        "names": [
          "london"
        ],
        "codes": [
          "lon"
        ],
        "state": [
          "gb",
          "united kingdom of great britain and northern ireland"
        ],
        "subdiv": [
          "lnd",
          "london, city of"
        ]
      },
      "score": 1346,
      "offset": {
        "start": 16,
        "end": 21
      }
    }
  ]
}

A Python wheel can also be built, using

  make wheels
  pip install build/wheels/berlin-0.1.0-xyz.whl

where xyz is your architecture.

Afterwards berlin should be functional inside a python shell/script. Example:

import berlin

db = berlin.load('../data')
loc = db.query('manchester population', 'gb', 1)[0];
print("location:", loc.words)

Description

Berlin is a location search engine which works on an in-memory collection of all UN Locodes, subdivisions and states (countries). Here are the main architectural highlights: On startup Berlin does a basic linguistic analysis of the locations: split names into words, remove diacritics, transliterate non-ASCII symbols to ASCII. For example, this allows us to find “Las Vegas” when searching for “vegas”. It employs string interning in order to both optimise memory usage and allow direct lookups for exact matches. If we can resolve (parts of) the search term to an existing interned string, it means that we have a location with this name in the database.

When the user submits the search term, Berlin first does a preliminary analysis of the search term: 1) split into words and pairs of words 2) try to identify the former as existing locations (can be resolved to existing interned strings) and tag them as “exact matches”. This creates many search terms from the original phrase. Pre-filtering step. Here we do three things 1) resolve exact matches by direct lookup in the names and codes tables 2) do a prefix search via a finite-state transducer 3) do a fuzzy search via a Levenshtein distance enabled finite-state transducer. The pre-filtered results are passed through a string-similarity evaluation algorithm and sorted by score. The results below a threshold are truncated. A graph is built from the locations found during the previous step in order to link them together hierarchically if possible. This further boosts some locations. For example, if the user searches for “new york UK” it will boost the location in Lincolnshire and it will show up higher than New York city in the USA. It is also possible to request search only in a specific country (which is enabled by default for the UK)

Berlin is able to find locations with a high degree of semantic accuracy. Speed is roughly equal to 10-15 ms per every non-matching word (or typo) + 1 ms for every exact match. A complex query of 8 words usually takes less than 100 ms and all of the realistic queries in our test suite take less than 50 ms, while the median is under 30 ms. Short queries containing an exact match (case insensitive) are faster than 10 ms.

The architecture would allow to easily implement as-you-type search suggestions in under 10 milliseconds if deemed desirable.

License

Prepared by Flax & Teal Limited for ONS Alpha project. Copyright © 2022, Office for National Statistics (https://www.ons.gov.uk)

Released under MIT license, see LICENSE for details.

License

Prepared by Flax & Teal Limited for ONS Alpha project. Copyright © 2022, Office for National Statistics (https://www.ons.gov.uk)

Released under MIT license, see LICENSE for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

berlin-0.3.8.tar.gz (18.9 kB view details)

Uploaded Source

Built Distributions

berlin-0.3.8-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

berlin-0.3.8-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

berlin-0.3.8-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

berlin-0.3.8-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

berlin-0.3.8-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

berlin-0.3.8-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

berlin-0.3.8-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

berlin-0.3.8-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

berlin-0.3.8-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

berlin-0.3.8-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

berlin-0.3.8-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

berlin-0.3.8-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

berlin-0.3.8-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

berlin-0.3.8-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

berlin-0.3.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

berlin-0.3.8-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

berlin-0.3.8-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

berlin-0.3.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

berlin-0.3.8-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (2.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

berlin-0.3.8-cp311-none-win_amd64.whl (857.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

berlin-0.3.8-cp311-none-win32.whl (839.8 kB view details)

Uploaded CPython 3.11 Windows x86

berlin-0.3.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

berlin-0.3.8-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

berlin-0.3.8-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

berlin-0.3.8-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

berlin-0.3.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

berlin-0.3.8-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

berlin-0.3.8-cp311-cp311-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

berlin-0.3.8-cp311-cp311-macosx_10_7_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

berlin-0.3.8-cp310-none-win_amd64.whl (857.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

berlin-0.3.8-cp310-none-win32.whl (839.7 kB view details)

Uploaded CPython 3.10 Windows x86

berlin-0.3.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

berlin-0.3.8-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

berlin-0.3.8-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

berlin-0.3.8-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

berlin-0.3.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

berlin-0.3.8-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

berlin-0.3.8-cp310-cp310-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

berlin-0.3.8-cp310-cp310-macosx_10_7_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

berlin-0.3.8-cp39-none-win_amd64.whl (857.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

berlin-0.3.8-cp39-none-win32.whl (840.0 kB view details)

Uploaded CPython 3.9 Windows x86

berlin-0.3.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

berlin-0.3.8-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

berlin-0.3.8-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

berlin-0.3.8-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

berlin-0.3.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

berlin-0.3.8-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

berlin-0.3.8-cp38-none-win_amd64.whl (857.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

berlin-0.3.8-cp38-none-win32.whl (840.0 kB view details)

Uploaded CPython 3.8 Windows x86

berlin-0.3.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

berlin-0.3.8-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

berlin-0.3.8-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

berlin-0.3.8-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

berlin-0.3.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

berlin-0.3.8-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

File details

Details for the file berlin-0.3.8.tar.gz.

File metadata

  • Download URL: berlin-0.3.8.tar.gz
  • Upload date:
  • Size: 18.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for berlin-0.3.8.tar.gz
Algorithm Hash digest
SHA256 b4b5615229ac6dfb751dcc9efca9d086bf3f02baefa6da0a01c991e77b0e3541
MD5 82d7d0ed05ce55b5899cf7b66031c5d6
BLAKE2b-256 12f3e362c9a201bd538cdc00351c41a53f8728dafbf9e4f494e973603682dab4

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 36c47edbbeed383d90243b06c165b182dfa706963feff349c41be45d40d04279
MD5 9c54bf37f18753656f9effcda9973c9a
BLAKE2b-256 442ab740cd2a1c01b2ba8bb756fc97c8ad7fd83a48076255798548def9522cde

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b7aeb4ff0b41bdc5e100909ee258284e7f67e7f18cc6409585d4265343266810
MD5 823303b750abba93ec32044144f2f29e
BLAKE2b-256 709ecc24373e64d4c23b6861df862036b3f63fe63f88f5caf2cb362347276510

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e8deaa6a0c1cc9237c5c2569a06395727905db3c037c6299dd88ff593c1930c6
MD5 73d0cc548c03d265c9afc83eaa0a16d1
BLAKE2b-256 647c99aa84720786bdb55c5fb03d4c86fbaf49126b34cf606beb199bc1f4b41a

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 1d3c2a536181daabd44a782c9b1a169ed8e6b71f121e28213278c8518fba4fe1
MD5 e1ffd7d1901b617d06e45749988e59fe
BLAKE2b-256 25b61805ec7f8fc647e7704b1a48a90b5ab3382559948f538065d0d449d792a7

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 648f9f4a08ef4aec1addde68e26287da02d228749e53a5f9923901dba6b1d82d
MD5 6b95f12ef45f13d2a210444c6870e092
BLAKE2b-256 baf7b156e008d918d94134d3f1ed4ed291afce34cf76481fb2c43b38df6bc18a

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 1724cd5aebc0b1dbc1e350ca94c5a5e30106111dfb59eb81bf492f6a53ebd2a1
MD5 e1e4a02f5d5b20b3a202d1af9bbb4131
BLAKE2b-256 be3989c992c345f93a777a0afb7b30fc9fe1b442ad5decdf49e3dd825b5f5e50

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e1ea6b12b74fe739e7b4407fd2d819a08174b106373f1c81620b1af7141d514b
MD5 89bb2f5c929a5cd0273a5eae2c3d3986
BLAKE2b-256 5fac4f099806e8ddc7a06d2b333817a9c53dc21a2f504e47848f23140169c586

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4314259b6dabfc74ce163f8ed1001a67a80e16034828354eae79207d86ac4825
MD5 a8077503d063202b9edea5de5f235c79
BLAKE2b-256 bf559d1bcec3e8fc527b9e72bd7571eb8559368d6f0f972de33b95b3f0c89b6e

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa2a3348788c665f96848f5f3120c2c7af46077def72fe16cbe9da11b260e7a5
MD5 71280c88b4e3ecd3ef9d3c2fb8cabf29
BLAKE2b-256 de69db9d0aedf82fba56cdd2bf9fffb1fd6e048df23175e76ac4c27af202f526

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 cfd743620d98be2c741b018e041917244eb67ce95898e2d94b77e85e7cf4f8bc
MD5 bf4c1f62f0f65d297f7064158b1052f1
BLAKE2b-256 3ce412e37c51414a2e1a0b2b67fd94f418037a92db02d2d22cf11d17f4cbd93c

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 78b35de4b090dfe46ed4fee3a214260841280ac0bc51817421f7f29a7a72f303
MD5 710e91bc29b08e7bf0b8bcc84938aeda
BLAKE2b-256 062a1c81ba91ce33c2a8c4a928e2485a2aaaaef609d85af06725338c2870571b

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 428deab33b7cc5f8733d49a1123b2627e0d8b5fb0ef6e20049c64b6690aa7734
MD5 2104fb312b6a09e3952bbd2f1850dac9
BLAKE2b-256 239070cd56f2740e1345cc4fcc88fbec9013b63fc665dd77fa5d0b8c2b5bed1b

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d615094bcf8fd1b8488942ad7b2b4a73d67f014fa95fc58f6ee9bcb8caf3466a
MD5 396f86fab0c195edd188e96d46eeb67d
BLAKE2b-256 ab368523c428ab93e1daa0cd389eca1ae7da9f436d55a566969cacf3bce6740c

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b1b36564aa5114679a0a05792035f6e4040c98c00a831ea08138600921c46dad
MD5 501f946ae51e64ab8f072670aa95f114
BLAKE2b-256 38629a68100496af9a90030ceaf2223fdac59fc8456c2ba5cbd2e3226fe26ad6

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9ddcc82d7fa3ee03c94a14901dfd6629fc1b2fc9ecc780ebdb5c746e5eff33b3
MD5 a5a5a68e692a5479f5c8908054bbd544
BLAKE2b-256 f371dc6f6aed1ffc31b5ae87b041bd3006a6e0dcea01b153d3c9090f7d6c21ea

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 18d54f128a9af0724dd59db53e49e65a56af422854673c91242a2e1fda430375
MD5 f8228983c81f16e6c67e44e8b3b3e834
BLAKE2b-256 bd1ecd46250563344cb3e45cbfb8c2f5226b24ddbba3ccb3068371a1c143b3bf

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 679a145540bc78d6327ab8ceb927c6609a0232dd26775d46dfb020e59a1c7b17
MD5 72f1d60f39c3a8a91f764f4f10b12d59
BLAKE2b-256 1e1c7caacd733243d951618331ef9f96c6fbc74e185f2b3bb81d58bbfb3a38b6

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 87a8344687b0c9afcbfb1a0abdb9222776548b8b8814ed8aea1e8b513cc1b45e
MD5 629c2205b08ea50fe4aef8d07de9062a
BLAKE2b-256 31788a9844a30bca2c4dbeca9b4619d1426dffda8fbb90525f7a63c6c938b353

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 407bfea91a25b9d05ebbb325d0fcd2968cfd54d118cdc6f7826e6ce4bfebcad7
MD5 dc079429be3446e101f9c489be584f06
BLAKE2b-256 f7520a7a855c0b2bc29f6653c794983142ed6a2b89553133cf5f1b3be28e6248

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp311-none-win_amd64.whl.

File metadata

  • Download URL: berlin-0.3.8-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 857.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for berlin-0.3.8-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 a81a5463b9df112af03204fee2c0d8a21651fcb6d301681bfaa41220545fde70
MD5 f8e88e0d543df9c5e9581d68da1f575a
BLAKE2b-256 c6e186be2939cde580f020e23b908ed415cf16c8d56e85a149e2d217fc639df0

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp311-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.8-cp311-none-win32.whl
  • Upload date:
  • Size: 839.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for berlin-0.3.8-cp311-none-win32.whl
Algorithm Hash digest
SHA256 3665f639f7829a62fe17c62c4d4a8ce10a6a2bc2ffcb6a1e80936f04fdbba7e7
MD5 9d55938bc735f58441dae9d8bfe80085
BLAKE2b-256 25fc0993c58c80b05c4c2da90da30a47e4448debcf530bf8dbb6d17f09e8ab53

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1c24dc24573e452ec3feecd254ba4c361d5b76fab060db1aac6473ab188eecc1
MD5 a3d17bf40b8da341bee4956983e3fdbc
BLAKE2b-256 d6235eef5717c256a337b5a85f7b27533e49b2a589ab9128a103ae5ce7502cb2

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d6d0510a6cdf5ed6abf5a7b2f11ba85f6bd6c38cefcd38b7f3fc1515951f32cb
MD5 66e1d79e81a61b365944de547b069438
BLAKE2b-256 c6e387b578075fcdeb6d4aedcd41b60e6512be1b825e3ae8bd9509a57366a87c

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 553cf86a6eb4f00cfa01d2c36ee16ed53c0942cc6c1ab788e44c06c5e48018d0
MD5 23261271e39da295f87d1e672eafec3a
BLAKE2b-256 338ed97acae7577dfeb91a02c038becccb9e6cc40ae257190624d13fb81efc81

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 a834987c956b47e7798926b2029a73e52f9b1ea251f24348a98168c91043daac
MD5 90a45a93e2235cb46b32d90f95007926
BLAKE2b-256 befdbaf4ab4ecb8d26873985cee9843ed90a123fd8f551c9ea262068e537b16e

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 237ecfee9f51d6473ab990f3b59b10c98b46e90a731885420c6c21c992469b46
MD5 ed3cc81c04c6ce575e66482e524b4ccc
BLAKE2b-256 3b4c827d1132557f2a6eb065dc629c2e3b74ef3ecbf1fb6f293ca3b82b42aed0

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9bab0f63262bf592948b25f91b58146861de23b7502adab6feb9588cdf1d7c24
MD5 9c94deacedf7b17ac0fd5214041c0eb5
BLAKE2b-256 0a87db499acf67e067b7e707eb91f1c6d0d372bd83ef01a5d8f78bcc0c3ebd56

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1a661a2af1ef5db336957f93c446cfb1edc6518d7b1007bf86f0575b3f0a1ee3
MD5 0f988ef7908d310de76fcef0f70c282c
BLAKE2b-256 fd3728d97faaef6f494123088868e8f4fa8ceda4306594c4cdee3b31e36a3f8b

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d4fcc8f06bd0031f4d05493af19978722787250866af750586776e73f9e5e4d4
MD5 dc7333a5d73da94714e5e79de18ffe27
BLAKE2b-256 aeaf46e46cbce102458fcc4c87a9a01165885c43971c54fee92a069d3f14eebf

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp310-none-win_amd64.whl.

File metadata

  • Download URL: berlin-0.3.8-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 857.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for berlin-0.3.8-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 ed1d20e089b09e7f117e741ab7581c53663429a6c6db4de8225fb6f3958e5d4c
MD5 7dcf5aaa47befe2bbe0889f33631473c
BLAKE2b-256 b380a6b4ed57c6cee21998f36fdd46bd57c36d185e8cd08af30aed6fa8006aed

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp310-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.8-cp310-none-win32.whl
  • Upload date:
  • Size: 839.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for berlin-0.3.8-cp310-none-win32.whl
Algorithm Hash digest
SHA256 abbf9bbbe9a642678e2245af84c880f342ae57cb4222b054f2c9a5e5eacb4c60
MD5 5d18df07d03f9155aba3fda6d7bb4ec0
BLAKE2b-256 9a908f8013a950abf9a0fb93f623d552145f7ef183c618f63553c40315bec4ad

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6617ae0f6d08e66a284305ac19cce0934f0c01c5400b356901126b924a269309
MD5 2fc197a564aeea724d1d680c98669543
BLAKE2b-256 fbd11ad4ad60098a8ace3805b10120a80030e268dd6e6275d319fb9979166567

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6477444932045001c74d13832d5ff440cbe02c43911cf06d5492a2946b9fc686
MD5 a4e44d52714d7f5f5bbc8a0ead2efe64
BLAKE2b-256 99a7433b6643c257e118e1fce49602b9039bc52cf2d11de1b455a289cc8c5760

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 961148f24393ec3b08eb07ac927b7a5ebb343e507d78014d834dd8e5fe90a37f
MD5 bb5d0f78d49dda18fab86bb07f6419f4
BLAKE2b-256 00e974baccd918682cfd1a8780b67e940bac9df6e1b7a7bf22c437f94ccc1a40

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 92c0507ced5d99af66bf4f63610138977d20c1ac413ecd1819d2e144e5040aac
MD5 86664e1c97e578ac803747981780612e
BLAKE2b-256 baa59626f9da26f03060ac07361452326ddbcc8c51f039871db858202cbab8eb

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 95a56c8879de1f8b290e57829c35659688b2492ef97756088e958e1c7bdcfe05
MD5 e0e9d999f773fafe9d02ed63421df6bd
BLAKE2b-256 288a53842ee68662e0f91ddcaec9572ccb963812f52478af14251c6e683719ef

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d29cba941a964093112fa566908db9ec1857970b981cff3050a5ac23d2e39089
MD5 932d635e1d6f551aa94b83fb5fc2851a
BLAKE2b-256 a1c1ad4111106b7e8328c722f3cbfa7e3b22df45ead877814761dd9ba33de59a

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7b36b841a90c52e1ae06e45b6c91d6e96b3f521060e82bbd07f50201e4147572
MD5 0b4454889e1bd43d1818a333902e1d86
BLAKE2b-256 e81657f1474333932b7580b91229da2321fb565dc4e25a6f02a081dcfd4da8a8

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 6190363165a48bb97339778100cb2e9edadf2ec881741a8da4b7ad2be1c39303
MD5 66b48a522fb8d00175d6e688618b9ad2
BLAKE2b-256 6c071053d4c2beb574361a038c1bbe09e21005ae9a07612436323d104011d52b

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp39-none-win_amd64.whl.

File metadata

  • Download URL: berlin-0.3.8-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 857.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for berlin-0.3.8-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 051949372037b115bf544481643fe80f83c1fb9959cc823b54bb968ca16aa28f
MD5 192ece9ba72c4081e745450b2fe9f121
BLAKE2b-256 9fee5ebe1ac7791910ebeb48c890a69b8093575b0c3fe4d55778965b78cafab4

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp39-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.8-cp39-none-win32.whl
  • Upload date:
  • Size: 840.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for berlin-0.3.8-cp39-none-win32.whl
Algorithm Hash digest
SHA256 b19b91b4bdac578653f1eaf5c4bc804c49c1ac35e8fef3d61098de823e03576f
MD5 5e735eb4ada0e9dd4b49010ecb4824d6
BLAKE2b-256 b0f6292924d976c5f29f6a2ed595aea5247e4592abaffa5f9969e2f80077d23f

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2d6f6af5988662bba7ae2b64f172178f07464fc0513a95fec00fb2fa8e84734b
MD5 1aaace2b65f9f7843c685d0248b25a17
BLAKE2b-256 c2624d92aefa80c9d8a33014185696bfc97a34eb0f89338e94fd2b29811ca871

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 0232355ad982cd81b202b5dfda3414a76949b557500aba11fca5c722d2879bc5
MD5 729f549864d41822c89895d01b9109b1
BLAKE2b-256 3f84f0fd05fe9d9909ee4879ee7c72987670d3f089beb68de78db97ec74b50ec

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ab4095fddd1e87e9db4b6aca3090d43f8eae613da86848bbd799e4910a7c7d93
MD5 d72fdaaef7cd8f23440f850915a7b427
BLAKE2b-256 fc262cd9d21b544b78f2efee288f1d93793990361378aeaf689e66c3b11419e9

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 7f416b7763fadd5d33b41ab349dc2c0b49f18e5f620677b649396ee035793ebe
MD5 e412dccfcd6dd12932425ea8010bb410
BLAKE2b-256 e5cd7dccd699467840e09e0a20deeb322d0bef3dd52323249f4b2a4c94b51834

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2578fee1049ab8840ff96d54c0550c1e7d0408e41a4ca9b7ed637875bbdfc608
MD5 9f74bd36d8300b7898af4201cc83a29b
BLAKE2b-256 a284374f664ee0a3611bfafe976eeb8ca37c5298cb8f48700f71943c8dfb1bbb

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1fe3cacc099588f8c5d185dbe16b8e1567d85b69f2242b2034cf65a0b4932732
MD5 a2c02bc1705c998e1b7374400fbdcbc0
BLAKE2b-256 ca6b64367ea120bf5931c3ca39d6b63d4c976828b3912eec719c7efe5d89ac76

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp38-none-win_amd64.whl.

File metadata

  • Download URL: berlin-0.3.8-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 857.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for berlin-0.3.8-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 53c524f4e8bab30631de06c7071022d55438a20fedd0d0038e7e787e76d279a1
MD5 dd6ee4372b43c9f71dac1a40723f59a7
BLAKE2b-256 27757a14da3f66113eb37c09e1005d897073d90f7b17bd04ace6b61a58fbca60

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp38-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.8-cp38-none-win32.whl
  • Upload date:
  • Size: 840.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for berlin-0.3.8-cp38-none-win32.whl
Algorithm Hash digest
SHA256 e6e7b410f6a4535e65b37c1f1f7976bc1949e6783989af9c6f6a23915cc95f0d
MD5 307f8ec626bf9dd87329efb151af186a
BLAKE2b-256 06f63aa51c0885a36d13a18d58af90eaf510ec6513893781ee094020eef8aa60

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 447bf58183bed3c139fe5f848fc3ca3ded150b4fa23de94da51b2da3acde59ae
MD5 ea85f22250f11777a6c67f995e55d260
BLAKE2b-256 80dd06cbaa42d5ec7a0f7a324c32e6c391c279e5af46d40814d42602ceca500b

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 07091875f2551dfa44bdb888b344a04e68b41cfcef5f9b0376c854b0feae992a
MD5 bc757224bee0faab93a4e47641b3c8a3
BLAKE2b-256 065fd06d2de41fafdcfa2097a9b8a4074ee1109de24d797d54d45398d54b438a

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 65efca3240cacdcf9c77c26b453b0e10790cc243d9482066422b617a0e205999
MD5 0a03e23532b4250d8af93006243dd46e
BLAKE2b-256 e36afa99894aeb78a712bdfe6e556dfe5b16ddb45c5585763513ed3231a01a1e

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 6f40d8378c3a411d31308a5a87655410ca47b142963e5af8b32f25641ed38147
MD5 4cda0a5611714f4899a890017643a8e7
BLAKE2b-256 db7eba858b97d65d591942b96f69bbc6f18415ed9d160cd1bfc33649410dffa1

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0b43c7aa92afa9913b0eb2a06918ff1d6a4e160ab2ace0cab8dec522737336cb
MD5 f24cd960390e1b21375aec32b3656a69
BLAKE2b-256 50e7f53a0c8624e7c29416d176d07b0f516d4d5ae869367bfde8a14be3aec16b

See more details on using hashes here.

File details

Details for the file berlin-0.3.8-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.8-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4a8b0faabc2041b1404ba82128a374d86ba7e83237801b72869714fb571f87bc
MD5 bae4b33d3e4a4a49e7359d2d2594788d
BLAKE2b-256 2a3a5abd26edff02f15837836ce64e1619f50659e4a99a93ef50b7329594d914

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page