Skip to main content

Identify locations and tag them with UN-LOCODEs and ISO-3166-2 subdivisions.

Project description

berlin-rs

A Python/Rust microservice to identify locations and tag them with UN-LOCODEs and ISO-3166-2 subdivisions.

Getting started

To test the Rust API locally:

  make run

This will make an API available on port 3001. It serves simple requests of the form:

curl 'http://localhost:3001/berlin/search?q=house+prices+in+londo&state=gb' | jq

replacing localhost with the local endpoint (jq used for formatting).

This will return results of the form:

{
  "time": "32.46ms",
  "query": {
    "raw": "house prices in londo",
    "normalized": "house prices in londo",
    "stop_words": [
      "in"
    ],
    "codes": [],
    "exact_matches": [
      "house"
    ],
    "not_exact_matches": [
      "house prices",
      "prices in",
      "prices",
      "in londo",
      "londo"
    ],
    "state_filter": "gb",
    "limit": 1,
    "levenshtein_distance": 2
  },
  "results": [
    {
      "loc": {
        "encoding": "UN-LOCODE",
        "id": "gb:lon",
        "key": "UN-LOCODE-gb:lon",
        "names": [
          "london"
        ],
        "codes": [
          "lon"
        ],
        "state": [
          "gb",
          "united kingdom of great britain and northern ireland"
        ],
        "subdiv": [
          "lnd",
          "london, city of"
        ]
      },
      "score": 1346,
      "offset": {
        "start": 16,
        "end": 21
      }
    }
  ]
}

A Python wheel can also be built, using

  make wheels
  pip install build/wheels/berlin-0.1.0-xyz.whl

where xyz is your architecture.

Afterwards berlin should be functional inside a python shell/script. Example:

import berlin

db = berlin.load('../data')
loc = db.query('manchester population', 'gb', 1)[0];
print("location:", loc.words)

Description

Berlin is a location search engine which works on an in-memory collection of all UN Locodes, subdivisions and states (countries). Here are the main architectural highlights: On startup Berlin does a basic linguistic analysis of the locations: split names into words, remove diacritics, transliterate non-ASCII symbols to ASCII. For example, this allows us to find “Las Vegas” when searching for “vegas”. It employs string interning in order to both optimise memory usage and allow direct lookups for exact matches. If we can resolve (parts of) the search term to an existing interned string, it means that we have a location with this name in the database.

When the user submits the search term, Berlin first does a preliminary analysis of the search term: 1) split into words and pairs of words 2) try to identify the former as existing locations (can be resolved to existing interned strings) and tag them as “exact matches”. This creates many search terms from the original phrase. Pre-filtering step. Here we do three things 1) resolve exact matches by direct lookup in the names and codes tables 2) do a prefix search via a finite-state transducer 3) do a fuzzy search via a Levenshtein distance enabled finite-state transducer. The pre-filtered results are passed through a string-similarity evaluation algorithm and sorted by score. The results below a threshold are truncated. A graph is built from the locations found during the previous step in order to link them together hierarchically if possible. This further boosts some locations. For example, if the user searches for “new york UK” it will boost the location in Lincolnshire and it will show up higher than New York city in the USA. It is also possible to request search only in a specific country (which is enabled by default for the UK)

Berlin is able to find locations with a high degree of semantic accuracy. Speed is roughly equal to 10-15 ms per every non-matching word (or typo) + 1 ms for every exact match. A complex query of 8 words usually takes less than 100 ms and all of the realistic queries in our test suite take less than 50 ms, while the median is under 30 ms. Short queries containing an exact match (case insensitive) are faster than 10 ms.

The architecture would allow to easily implement as-you-type search suggestions in under 10 milliseconds if deemed desirable.

License

Prepared by Flax & Teal Limited for ONS Alpha project. Copyright © 2022, Office for National Statistics (https://www.ons.gov.uk)

Released under MIT license, see LICENSE for details.

License

Prepared by Flax & Teal Limited for ONS Alpha project. Copyright © 2022, Office for National Statistics (https://www.ons.gov.uk)

Released under MIT license, see LICENSE for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

berlin-0.3.9.tar.gz (19.4 kB view details)

Uploaded Source

Built Distributions

berlin-0.3.9-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

berlin-0.3.9-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

berlin-0.3.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

berlin-0.3.9-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

berlin-0.3.9-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

berlin-0.3.9-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

berlin-0.3.9-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

berlin-0.3.9-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

berlin-0.3.9-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

berlin-0.3.9-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

berlin-0.3.9-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

berlin-0.3.9-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

berlin-0.3.9-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

berlin-0.3.9-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

berlin-0.3.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

berlin-0.3.9-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

berlin-0.3.9-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

berlin-0.3.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

berlin-0.3.9-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (2.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

berlin-0.3.9-cp311-none-win_amd64.whl (864.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

berlin-0.3.9-cp311-none-win32.whl (847.2 kB view details)

Uploaded CPython 3.11 Windows x86

berlin-0.3.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

berlin-0.3.9-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

berlin-0.3.9-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

berlin-0.3.9-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

berlin-0.3.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

berlin-0.3.9-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

berlin-0.3.9-cp311-cp311-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

berlin-0.3.9-cp311-cp311-macosx_10_7_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

berlin-0.3.9-cp310-none-win_amd64.whl (864.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

berlin-0.3.9-cp310-none-win32.whl (847.2 kB view details)

Uploaded CPython 3.10 Windows x86

berlin-0.3.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

berlin-0.3.9-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

berlin-0.3.9-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

berlin-0.3.9-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

berlin-0.3.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

berlin-0.3.9-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

berlin-0.3.9-cp310-cp310-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

berlin-0.3.9-cp310-cp310-macosx_10_7_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

berlin-0.3.9-cp39-none-win_amd64.whl (864.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

berlin-0.3.9-cp39-none-win32.whl (847.5 kB view details)

Uploaded CPython 3.9 Windows x86

berlin-0.3.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

berlin-0.3.9-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

berlin-0.3.9-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

berlin-0.3.9-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

berlin-0.3.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

berlin-0.3.9-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

berlin-0.3.9-cp38-none-win_amd64.whl (864.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

berlin-0.3.9-cp38-none-win32.whl (847.6 kB view details)

Uploaded CPython 3.8 Windows x86

berlin-0.3.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

berlin-0.3.9-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

berlin-0.3.9-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

berlin-0.3.9-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

berlin-0.3.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

berlin-0.3.9-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

File details

Details for the file berlin-0.3.9.tar.gz.

File metadata

  • Download URL: berlin-0.3.9.tar.gz
  • Upload date:
  • Size: 19.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for berlin-0.3.9.tar.gz
Algorithm Hash digest
SHA256 e3611c6005f2e9a9f05267996464c74456349fc29f9f29e880553286a69c13df
MD5 d8676d8f5d36ea18e0b619d6ce26bf59
BLAKE2b-256 6f69f5f70726c18fb6e0d5702f0f789edd9279af462905206508853efda27e2f

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 621a9ca4a8ef362bf80704d2f10a38a1be3d3952c7f2ab60da443e762d1a9f51
MD5 6f63dbee0d44cffe8fd2a96692992a37
BLAKE2b-256 a899c0b1fe7eccf31aec6fc0ade6f2fd53fcab75ba861cddcbe56c45af278d78

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 20798628ab0f19bbfdbea473b162427a7cf67d2529187d35f7136909c516eea3
MD5 af43c0d69766bcef707e7b7673fced31
BLAKE2b-256 c605438c11d96cabd6472504cfcf1b678305bf6ab105c8718540536d0a27adf9

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7f281294b0be2a43d551c93868ed6079bff432176a521d818394b644c256f137
MD5 70ffba700bb641917be9de76fa4302a7
BLAKE2b-256 81e09c7aff01f9447d4afe734da7b628c30aa5e3f5595d86fcefcfec10614d69

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 59472d5b68e5aea604eb3fe912ada24b101476c02693d6461f6cd2f2ad8ae57e
MD5 39f9d03525f4d6740f353efa74ae7e98
BLAKE2b-256 426cf4b308488d2f55cd70eca4df7f0d7b7179c1b8ee475550e80d74038d55e1

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a053762a14332ddaebecaf2409863ee3733a7adcfdf585be0df3f7a5bbf30f54
MD5 a0c39c45d81d14a94224f8c92ac07bcc
BLAKE2b-256 d2cf22e56e2551b99218b35e759e6711573d69cfcadf33e1a7fe9910ab123803

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 6c44ee827ae974020ac915528ed1a72f11a82daecce794270f50413efadca2f7
MD5 869d388673b6c375fc2280f71784d00a
BLAKE2b-256 d5f84e4d14e2330cb86b5d7369de90ea3da00abfbc4ac02016a161cf8295b38d

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7dfe2c0f08270b01c2df67668a9ec17851c2d434830ce55b28f344ef7310326e
MD5 99c2719a1bcfad4594efb991614f4dc9
BLAKE2b-256 480c18f36efa44c1c79e885b8f492791df54209776cf09a566ecec594975c251

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8562742712014d1967dc82a84a5db27d259f6adf90fc0c8bf722ffbf671999a2
MD5 975cf5b38cd0865b427e380375cab0ee
BLAKE2b-256 fa0b0f556ec357f9c4a190294eb8524c568fbbcb0ed176e01248609e50b347aa

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 376c969ad8f7635bcf5b70ab335c42f92365ad7987b77b6858e2120bf150b23f
MD5 746a87590c6bde2704879b5c8195dd3e
BLAKE2b-256 21fd6f469ca439b8446d48866984776fbfabecd51a50cb62e553910f09940c6d

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 cad04b62936f7849001131918ef5265cd541e8b41d7fea3023115420d3215a51
MD5 acdff3d5e6a66798f723c11a1354a8aa
BLAKE2b-256 9bb329b1f9975e93340abdc03e34310612a77ac044bd7bb4f02ee023cce39b4b

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2d86102478b032dbf9da6249a5e39d8d6cffdd08e42c096cd7c28249243124f3
MD5 5180846a212230ffe2c546b582b268a6
BLAKE2b-256 b1b84b57371cbcbd3fea100ad2c2761bd8811f39116af3efb07690011928c3f7

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 07ec05a1ea152ac7015fc7d50d16a4b480cb9aea17df64a990dad0ba9ce49d24
MD5 e703784f0e70280dc2b7185cb2ef021f
BLAKE2b-256 e68e6f11204cd5c9fdfbfd50f9994209d21b7c929c708eefafeb077b3925508e

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ff3bceb9be7c4aecb7f3e4c31b11706105e679bf93082fe0e45c2378baa7c20a
MD5 ce509c014d3c9af3fd1cbb28147a3ebd
BLAKE2b-256 7dc445a0992bfa24d5748d870d8900d234ad47c8cdd7a1ec72d6099d84bd386f

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b4a5c83d2ed739145e5b2c59185b3779564fc196d06fff046f94c38a9a55cda7
MD5 9d83067dc9cf36af78bbbd79e07710e1
BLAKE2b-256 566d4a342166babf64cee7064635b5a4642b533090b1ef3b8a7b16625c01a146

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a2b134482f65646457987d0ede0304d3c326894c2c568e7ebad0cab22d868a5f
MD5 df175afd326d885af8aa01056f353fa9
BLAKE2b-256 0795d447a419ba0215b5b6c3f85b3ba29ed7dbe1ba7ea07aecbf1b15371af58b

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 b4e94cc800df97ae15a29524cceba15af4da14f96ca0c97b4c4d750cf891223d
MD5 6caadbbcb50e4ae82ed1452c25427607
BLAKE2b-256 c9e4cb57148282d65541d64d41da02eab716d0711c2d1c47c39000db3d2576bd

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 eb30b826cfdfc50e192fba84d142f4a39eb7a661953e1ff144a6a2e9241ad2f2
MD5 d039eac0211d9ffd6a6b106bfd693e9b
BLAKE2b-256 9fd59da9c6f85e7646d7eb4a27c4fe2a6b4d92e74368c862a7c09aee271d3af5

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 64a9812b415c49431362da7fe11a05022b451a431214f7c626a80ed08bc4c66b
MD5 4c4c9d22a0dd420d7e65775642a40aa6
BLAKE2b-256 bed9f19e0d27936302c783ba8266ee0a47ea7f7060184040f1748a0ff1e2eb2b

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1f2065afe2007e794833a173de79ed050648713a0ccae7b1112cf3685fc48687
MD5 1e1ab7a08e872159a515750506cd861d
BLAKE2b-256 b3a099f4e9831ed786c0ad1b7d403391b738fe71ac7b723ac177b65c3ded417a

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp311-none-win_amd64.whl.

File metadata

  • Download URL: berlin-0.3.9-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 864.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for berlin-0.3.9-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 b582c503c8c22ceb38b509be7fcfa2ac2545e720e09235011e9f1b1e98b21e03
MD5 0de812f40b163a8f293356e0fcfbfd37
BLAKE2b-256 b3527a143aedf45f2c88f0c51dbcfde19a82a250c0e039552015d8ad94554cde

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp311-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.9-cp311-none-win32.whl
  • Upload date:
  • Size: 847.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for berlin-0.3.9-cp311-none-win32.whl
Algorithm Hash digest
SHA256 8e64491ea84562651cc6506c8913abfed02549745227d24ebb858e2b7e54718c
MD5 4710ec7fbc6eae93fd2b3478aeba32e6
BLAKE2b-256 23cd673a7cdb86aa1f9d5c9d00b2bdf1000ba9c4f0072d8e6b0835da1d4674d0

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 079f0cf18c3b3acd17009bca513d3f4123e62fd5b75bd0c3efc8d3d325b6a7cf
MD5 e73da54d6933bc88f1d5f61c8fdc73d8
BLAKE2b-256 600dc8b3a228c079a590743be32fc7aa39fde9a54023000697ecc8857df71d7b

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ffa5e41d205cfbc9fb7637c9e04e9e5806a7cf97c801cb395e9b23d1f69ea020
MD5 c8647086c2936f221d1e5af085f8a1c1
BLAKE2b-256 baa8712ef3d0fc52ac502a2b8d579e89c82b81f2949ba83e1cfc60861d87493f

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 cb9f63f2882848f872fa866969bf9e53411ee9baf01b26fdaea3c0ab23863438
MD5 6bfd2789cd39986679c591139c2b4bcd
BLAKE2b-256 9b5d4886ca2149063d75bdb627b47516eea2a6a3a3a4c47c0320f57ddbde8179

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 7ae1ed0275d3b7b5e05f72eb55655bf46cb8406bb69284c95b7b91609777bb86
MD5 0c449288483edbc1171b8e00e8252a8f
BLAKE2b-256 d6e0e98b15c000b2addefb3016a0674f8bdfb6de3b39f6a64b502846644f4bbc

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e0a5fad43d20c2cfe93581f478d49342e08f731c9d94be244e402bd1dd238059
MD5 1cfa35956e354ce96f342c9eb335d8f4
BLAKE2b-256 81c4ea8702cc174ab338d87a7b9203dcb73cd4567f6b65d046cc5febdddfa6d8

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8fe46077f7b97800fc115b3b2ba00dfdb4a33c09dfa1cd3b669f86f4f310149d
MD5 489220852fa9e884525e10093d4a1117
BLAKE2b-256 a7943ca2670384dd52e8fd4fb4afeefc1ecde4c03a6762afeaeb11b7f823f62d

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d05888a7b7e7f42daf69eec558bd69090e0640924e23cc60e9be3b772efd5d1d
MD5 03f0177f8460713f0d4c13996b46ffff
BLAKE2b-256 ae8a0aedd4f3ef41ecfc3b58443d2b2973504e8c14b5c931d1f5db6f636f166c

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 6132fad0092cf58f878d7b17800d0b730fa2a96384e5fb25e4711288e7811ac1
MD5 40e5a47dd906e25779fd88c5b2c64dc2
BLAKE2b-256 74867d3b311726ee9117c1275bd08447def48fe8ea5959f6bdb1be4b07348b7e

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp310-none-win_amd64.whl.

File metadata

  • Download URL: berlin-0.3.9-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 864.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for berlin-0.3.9-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 f1e47c2fa0e17fd897b3f3c7271165292677760304c285798cacc60d6603c3ef
MD5 5692909211ff458503ba9c241a5c68d2
BLAKE2b-256 dd461078c8ee2faa9314b17d592262f38069aff7268623a28763ebef1499c0b3

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp310-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.9-cp310-none-win32.whl
  • Upload date:
  • Size: 847.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for berlin-0.3.9-cp310-none-win32.whl
Algorithm Hash digest
SHA256 24b2f6ae1c49bba7086befe00918cd172c0db46b2d4454064474f90056bccb06
MD5 b67948e3a35abd5b922cb601244a710c
BLAKE2b-256 e707b899969d30cb7f125dadf1b43fe396dbbfa02beb32f91342abe73d08d282

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4b84517293aa686627fa879366343799e300f1042ac99c751974ff650c46d370
MD5 cac888aee7229dc06107d33b84896121
BLAKE2b-256 87a66318af4e38e334e088be6a2bcc7afe45689abec47a213194083389b91e70

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 463ff5aa35238541d81f1683b0142e4f07498f336e0b6c226f847857c761075d
MD5 fd44b1929fd63f7bb8d80a96831fa675
BLAKE2b-256 d34b45933d37456ac82cffcc374982545ff82d0472295352662c49a339148612

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7e706924420e39bfd6f381a825db4a8d3ee3d428ff6671e534c63f5edd5f750c
MD5 6a72229faa887a0df8359f0ae9560429
BLAKE2b-256 9733d7a50e75aaaf6149e93ae8b540f037235985c0ecc2ab1f6a2ac42405bc18

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 638c6d01471022e9b9880c7f8f61f8b7c88c056da6aa9483bf8e3d7a9fee5026
MD5 22282a8c6fc6bd272e022c1e138053eb
BLAKE2b-256 6f81ac5462bcab7adc1af6156037bcd207a92bedaa291ff5a8bc004cd7e5484e

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9d1d932f21108589fb98efc996f0867b4c7e33ea922e13912b51b6e0fdbb15dc
MD5 78c6dba7c4130d0c0c779fc666e06de9
BLAKE2b-256 446143306fc9a4b18054b565d0b9925365919ff04afce2777eafd45a99a22422

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c8d8f13eb79c2a11185ffce6bcd19933d5456169ee619f81e3de872a668e0894
MD5 9918dc7ab9c4ae5b1fa0eb66646d7387
BLAKE2b-256 ca7f909eeddf108eb5f06a1896444b24e93fadfbe415619806b5e54155fd6ee6

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ea83092f33d32ab8240fa45b87649c5b28d028e7fd9400b872b59c60288bfe24
MD5 3824ba6b7ed03b8625804e85f7d62941
BLAKE2b-256 9c2b304f3082ad855d4f4fa35b728d61ff3632b6a8d5f7a8473fd6f6b4ca2f69

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 9eb8a9a5a1e5ba7801a0147be079945fb4e444898153e47efc9c33412a3536df
MD5 e2c07cb9c6e6c6da739b67d9d963ec71
BLAKE2b-256 605509f5100d8e19227a7dca97e4499fe583dd52baf8caba8a7aed3c4f5046af

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp39-none-win_amd64.whl.

File metadata

  • Download URL: berlin-0.3.9-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 864.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for berlin-0.3.9-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 c6f34bda92e31987fdf629a31282bd677403c8505f3e38e50df64c14b3da6502
MD5 af1eec786f8970e7d01559b9433ac593
BLAKE2b-256 4f60a78f43c248285fdfba9596cc3858a820b62cb1f045e40e195e0ae4a52f99

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp39-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.9-cp39-none-win32.whl
  • Upload date:
  • Size: 847.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for berlin-0.3.9-cp39-none-win32.whl
Algorithm Hash digest
SHA256 95ea17838171ad6073a0e58bb0f6904f16d33c7637a72502a74657f1d03f5fd2
MD5 7be0026846e3a27890b048380f4e6257
BLAKE2b-256 75641570eb98fb52466a213eb5bfdee338c58da5e0d8df76de8695b3a53d68fb

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f5c4041446090542fd7c5fdda238805c2a0c8ef39cb8645e12f86fa07583f9c
MD5 dacd375497997f9bd34a5165303f357a
BLAKE2b-256 928f581c26f7e34a4f51d4533ca697c1ce7e2634505ebbf9a4d21969501a95ce

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e0fdf3fc615c21700596987e2ea848e231ef5ea740824d6c16763fee7a353228
MD5 9b066b0810ff1a64a524925f4365f546
BLAKE2b-256 a00a8da1d1547eb312a61b42d0b831bb04b60d8fad2f08bf2cefe9c1c6ab2571

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 50ec2a90fc2ae6eeb279f9b5d6a87411cbe383ddd1da183989db029cb61e8ab3
MD5 5f56fde234d7ea2ebb5c9b94633330ac
BLAKE2b-256 fa414cdc70fda6489389124928b77ec699a6215caf82e292e862de74a6bca497

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 5aa45dd99a0d2054b3a87e387e8520343bb8525a10eb088c487ba2eab52dfad8
MD5 89bab44c1f5fda9471c9dd02085aa0cc
BLAKE2b-256 9188416cf2af05a4d3207098e92ad4654519a234102b28c03c208ffb80366a31

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7a479b91208f1be622961051b25f115903ccfc53d8f5989738db78407422080f
MD5 b15d88a8d68cc2336da923914a261906
BLAKE2b-256 318f65caca32eec1c63d8fb40d7512a3130e536ec482b646ff0319a7092b7b70

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5fbebc6a00a15daf6fd15aede0a6ed18ca96e5c67d52cc0377e96ef27448bf8f
MD5 812ddbad58f34a56d6d03ee0c4d56b65
BLAKE2b-256 e5ba105873aedd86ae3fe4f31237baa88af281719bbc33ebbc42fae5b91f71db

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp38-none-win_amd64.whl.

File metadata

  • Download URL: berlin-0.3.9-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 864.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for berlin-0.3.9-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 b821f1f4a770db163e066dd65f49f053849180707710cc4daf3bfcae6408402b
MD5 4e54eeb84c4216890d27ba110ec9497d
BLAKE2b-256 b011252cb1a20129fd447c7839e2797f5ab449e89f243b4d90c17aeb2d6ac674

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp38-none-win32.whl.

File metadata

  • Download URL: berlin-0.3.9-cp38-none-win32.whl
  • Upload date:
  • Size: 847.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for berlin-0.3.9-cp38-none-win32.whl
Algorithm Hash digest
SHA256 f9a3637a247733e9570c61959c3900a53b6007218fa2e50d05a50a7c085f7958
MD5 959dc252d459f76d3bf4363133bb8cec
BLAKE2b-256 d559ee2d633eae7b8bb02a01b0d46cdc865da1f1fa810c18ed01f553cf20c3e9

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d9c90c36cacc40b379e6e566214d87e0c7c0ed286a08a5454dcc23594e08c77
MD5 de2131a59be1b7a9854e3afb3b3cb792
BLAKE2b-256 7c2122336aff3cf89dfa6f5299dbd4402a24af5444a8a4d639d75a4e757ce7de

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6274929f8e788b43cf96bbbd6b0dcfadbbdf59806705dc668cb18ab3c581541b
MD5 0de270a1f02ecad8ce3d9ddfc2f32192
BLAKE2b-256 e091a0ce619e6cc6339fbaf9854dbbd961ae846f8be7c1abd4100acb2e3ae35e

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e8a73fab360a951a1d99654e60da7954471bcf4fc1078fd1e92f6863c7068836
MD5 fa71d1a7614f119dfdebd4bb17596ec1
BLAKE2b-256 1e87b22ea5592a66cfbc7921c44fa81d075fc866158156812aa926f970cd0766

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 1d3cca0254b6a4c18e6aa31400f2bbba3865a34e1a3eefa26b528fe070788a47
MD5 3e1627b3c721096dba89190cf7a9c78e
BLAKE2b-256 a6d90f97ab65f63a25842d3f281ac1bc147d98fe22b2cc615a9cc447a12be078

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4b845c7b77468431323c534dcab0aed611f202ba5dd5cb1b1c33adea81d0c1ff
MD5 7a0ccbf8f167db42da4b7aadfe6780bc
BLAKE2b-256 8ffe8e8a8281b315978c8fcde79115a4a9056cd91e3104eb5b94445ef4de5eb4

See more details on using hashes here.

File details

Details for the file berlin-0.3.9-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for berlin-0.3.9-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c2447c9cf26f458580cf4885fa17815578d07ea9bf713c799fbb438518ea0c73
MD5 cb5c6f1aa20308a36f8f8401fec29242
BLAKE2b-256 e8a8db4d26fabf35a4aca29aafc84ec3ca5067138c805b24d555e968760c1978

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page