Skip to main content

Database of interaction models for molecular dynamics and Monte Carlo simulations

Project description

Berni

pypi version license Binder pipeline coverage report

A database of interaction models and trajectory samples for molecular dynamics and Monte Carlo simulations. Berni can export interaction models to a range of simulation backends, such as atooms, LAMMPS, RUMD.

Quick start

Get info on the available models

import berni
for model in berni.models:
    print(f'- "{model["name"]}": {model["description"]}')
- "bernu_hiwatari_hansen_pastore": Binary soft-sphere mixture with size ratio of 1.4
- "coslovich_pastore": Short-ranged pairwise-additive model for silica
- "dellavalle_gazzillo_frattini_pastore": Binary Lennard-Jones mixture model for NiY alloys
- "gaussian_core": One-component Gaussian core model with long-range cutoff
- "grigera_cavagna_giardina_parisi": Binary soft-sphere mixture with size ratio of 1.2 and smooth cutoff
- "harmonic_spheres": Binary mixture of harmonic spheres with size ratio of 1.4
- "kob_andersen": Binary Kob-Andersen Lennard-Jones mixture
- "kob_andersen_2": Ternary Kob-Andersen Lennard-Jones mixture
- "lennard_jones": One-component Lennard-Jones model
- "roux_barrat_hansen": Binary soft-sphere mixture with size ratio of 1.2
- "wahnstrom": Binary Lennard-Jones mixture with size ratio of 1.2

Get a specific model as a dictionary in the default schema

berni.models.get("lennard_jones")

Print the qualified names of the available samples

for sample in berni.samples():
    print(sample["path"])
lennard_jones-13ce47602b259f7802e89e23ffd57f19.xyz
grigera_cavagna_giardina_parisi-0ac97fa8c69c320e48bd1fca80855e8a.xyz
coslovich_pastore-488db481cdac35e599922a26129c3e35.xyz
lennard_jones-5cc3b80bc415fa5c262e83410ca65779.xyz
kob_andersen-8f4a9fe755e5c1966c10b50c9a53e6bf.xyz
bernu_hiwatari_hansen_pastore-f61d7e58b9656cf9640f6e5754441930.xyz

Get a local copy of a Lennard-Jones fluid sample

local_file = berni.models.get("lennard_jones-5cc3b80bc415fa5c262e83410ca65779.xyz")

The local_file can then be used to start a simulation or further analysis.

Export a model for a simulation backend

berni.models.export("kob_andersen", backend='lammps')
pair_style lj/cut 1.0
pair_coeff 1 1 1.0 1.0 2.5
pair_coeff 1 2 1.5 0.8 2.0
pair_coeff 2 2 0.5 0.88 2.2
pair_modify shift yes

Documentation

Check out the documentation for full details.

Installation

Clone the code repository and install from source

git clone https://framagit.org/coslo/berni.git
cd sample
make install

Install berni with pip

pip install berni

Contributing

Contributions to the project are welcome. If you wish to contribute, check out these guidelines.

Authors

Daniele Coslovich: https://www.units.it/daniele.coslovich/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

berni-0.1.0.tar.gz (63.0 kB view details)

Uploaded Source

Built Distribution

berni-0.1.0-py3-none-any.whl (67.9 kB view details)

Uploaded Python 3

File details

Details for the file berni-0.1.0.tar.gz.

File metadata

  • Download URL: berni-0.1.0.tar.gz
  • Upload date:
  • Size: 63.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for berni-0.1.0.tar.gz
Algorithm Hash digest
SHA256 e6540459c050e419f4268c1e09f39b1085cd1628d0c39be25c46a098b361a232
MD5 48dcc8265bdcd146f95e4434adbdb6c0
BLAKE2b-256 baff489f941016f8fbf6fa8870e3441dcd3603efb037a3eafab4df9d5b39477d

See more details on using hashes here.

File details

Details for the file berni-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: berni-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 67.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for berni-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 bde228df3e8aabd8cbbe3bf640f97c9a264ed1708f788acdb49e952403206ad1
MD5 868007437ab200f1435e5d989c8ce0ad
BLAKE2b-256 941d55b816727a181a0e59c132013b4398016ce973ebe806a0aee5ce34aba2cf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page