Skip to main content

BERT token level embedding with MxNet

Project description

Bert Embeddings

Build Status PyPI version Documentation Status

BERT, published by Google, is new way to obtain pre-trained language model word representation. Many NLP tasks are benefit from BERT to get the SOTA.

The goal of this project is to obtain the token embedding from BERT's pre-trained model. In this way, instead of building and do fine-tuning for an end-to-end NLP model, you can build your model by just utilizing or token embedding.

This project is implemented with @MXNet. Special thanks to @gluon-nlp team.

Install

pip install bert-embedding
pip install https://github.com/dmlc/gluon-nlp/tarball/master
# If you want to run on GPU machine, please install `mxnet-cu92`.
pip install mxnet-cu92

This project use API from gluonnlp==0.5.1, which hasn't been released yet. Once 0.5.1 is released, it is not necessary to install gluonnlp from source.

Usage

from bert_embedding import BertEmbedding

bert_abstract = """We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers.
 Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers.
 As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. 
BERT is conceptually simple and empirically powerful. 
It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%."""
sentences = bert_abstract.split('\n')
bert = BertEmbedding()
result = bert.embedding(sentences)

If you want to use GPU, please import mxnet and set context

import mxnet as mx
from bert_embedding import BertEmbedding

...

ctx = mx.gpu(0)
bert = BertEmbedding(ctx=ctx)

This result is a list of a tuple containing (tokens, tokens embedding)

For example:

first_sentence = result[0]

first_sentence[0]
# ['we', 'introduce', 'a', 'new', 'language', 'representation', 'model', 'called', 'bert', ',', 'which', 'stands', 'for', 'bidirectional', 'encoder', 'representations', 'from', 'transformers']
len(first_sentence[0])
# 18


len(first_sentence[1])
# 18
first_token_in_first_sentence = first_sentence[1]
first_token_in_first_sentence[1]
# array([ 0.4805648 ,  0.18369392, -0.28554988, ..., -0.01961522,
#        1.0207764 , -0.67167974], dtype=float32)
first_token_in_first_sentence[1].shape
# (768,)

OOV

There are three ways to handle oov, avg (default), sum, and last. This can be specified in encoding.

...
bert = BertEmbedding()
bert.embedding(sentences, 'sum')
...

Available pre-trained BERT models

book_corpus_wiki_en_uncased book_corpus_wiki_en_cased wiki_multilingual wiki_multilingual_cased wiki_cn
bert_12_768_12
bert_24_1024_16 x x x x

Example of using the large pre-trained BERT model from Google

from bert_embedding.bert import BertEmbedding

bert = BertEmbedding(model='bert_24_1024_16', dataset_name='book_corpus_wiki_en_cased')

Source: gluonnlp

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bert_embedding-0.1.4.tar.gz (7.2 kB view details)

Uploaded Source

Built Distribution

bert_embedding-0.1.4-py3-none-any.whl (11.7 kB view details)

Uploaded Python 3

File details

Details for the file bert_embedding-0.1.4.tar.gz.

File metadata

  • Download URL: bert_embedding-0.1.4.tar.gz
  • Upload date:
  • Size: 7.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.5.6

File hashes

Hashes for bert_embedding-0.1.4.tar.gz
Algorithm Hash digest
SHA256 2e96d1e5577d013620d6a801c34a8cd2bd2ef4ed72aa1d678f7465dd8b71b6e2
MD5 e9d11e632fa7c0c72d20be9490e62ad9
BLAKE2b-256 0a6041707e4adc8c51120badbee8d73c79e95c2079feb4127d36e1abb334452a

See more details on using hashes here.

Provenance

File details

Details for the file bert_embedding-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: bert_embedding-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 11.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.5.6

File hashes

Hashes for bert_embedding-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 80d45606c3ee04785ce959852f64f69a020cbdb714547244834e80bb4c5d0d27
MD5 9d5f02516618297377bd94533c96321b
BLAKE2b-256 ff20068d20292c21775d23331763e79d3ee57e2292716cb2b6bf44aab8354ef1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page