A TensorFlow 2.0 Keras implementation of BERT.
Project description
This repo contains a TensorFlow 2.0 Keras implementation of google-research/bert with support for loading of the original pre-trained weights, and producing activations numerically identical to the one calculated by the original model.
The implementation is build from scratch using only basic tensorflow operations, following the code in google-research/bert/modeling.py (but skipping dead code and applying some simplifications). It also utilizes kpe/params-flow to reduce common Keras boilerplate code (related to passing model and layer configuration arguments).
bert-for-tf2 should work with both TensorFlow 2.0 and TensorFlow 1.14 or newer.
NEWS
28.Jun.2019 - v.0.3.0 supports adapter-BERT (google-research/adapter-bert) for “Parameter-Efficient Transfer Learning for NLP”, i.e. fine-tuning small overlay adapter layers over BERT’s transformer encoders without changing the frozen BERT weights.
LICENSE
MIT. See License File.
Install
bert-for-tf2 is on the Python Package Index (PyPI):
pip install bert-for-tf2
Usage
BERT in bert-for-tf2 is implemented as a Keras layer. You could instantiate it like this:
from bert import BertModelLayer
l_bert = BertModelLayer(BertModelLayer.Params(
vocab_size = 16000, # embedding params
use_token_type = True,
use_position_embeddings = True,
token_type_vocab_size = 2,
num_layers = 12, # transformer encoder params
hidden_size = 768,
hidden_dropout = 0.1,
intermediate_size = 4*768,
intermediate_activation = "gelu",
name = "bert" # any other Keras layer params
))
or by using the bert_config.json from a pre-trained google model:
import os
import tensorflow as tf
from tensorflow.python import keras
from bert import BertModelLayer
from bert.loader import StockBertConfig, load_stock_weights
model_dir = ".models/uncased_L-12_H-768_A-12"
bert_config_file = os.path.join(model_dir, "bert_config.json")
bert_ckpt_file = os.path.join(model_dir, "bert_model.ckpt")
with tf.io.gfile.GFile(bert_config_file, "r") as reader:
stock_params = StockBertConfig.from_json_string(reader.read())
bert_params = stock_params.to_bert_model_layer_params()
l_bert = BertModelLayer.from_params(bert_params, name="bert")
now you can use the BERT layer in your Keras model like this:
from tensorflow.python import keras
max_seq_len = 128
l_input_ids = keras.layers.Input(shape=(max_seq_len,), dtype='int32')
l_token_type_ids = keras.layers.Input(shape=(max_seq_len,), dtype='int32')
output = l_bert([l_input_ids, l_token_type_ids]) # [batch_size, max_seq_len, hidden_size]
and build (or compile) your model:
model = keras.Model(inputs=[l_input_ids, l_token_type_ids], outputs=output)
model.build(input_shape=[(None, max_seq_len), (None, max_seq_len)])
before loading the original pre-trained weights into the BERT layer:
from bert.loader import load_stock_weights
load_stock_weights(l_bert, bert_ckpt_file)
N.B. see tests/test_bert_activations.py for a complete example.
Resources
BERT - BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
google-research/bert - the original BERT implementation
kpe/params-flow - A Keras coding style for reducing Keras boilerplate code in custom layers by utilizing kpe/py-params
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.