Skip to main content

bert_pretty is a text encoder and result decoder

Project description

bert_pretty is a text encoder and result decoder

# -*- coding:utf-8 -*-
'''
    bert input_instance encode and result decode
    https://github.com/ssbuild/bert_pretty.git
'''
import numpy as np
#FullTokenizer is official and you can use your tokenization .
from bert_pretty import FullTokenizer,\
        text_feature, \
        text_feature_char_level,\
        text_feature_word_level,\
        text_feature_char_level_input_ids_mask, \
        text_feature_word_level_input_ids_mask, \
        text_feature_char_level_input_ids_segment, \
        text_feature_word_level_input_ids_segment, \
        seqs_padding,rematch


from bert_pretty.ner import load_label_bioes,load_label_bio,load_labels as ner_load_labels
from bert_pretty.ner import ner_crf_decoding,\
                            ner_pointer_decoding,\
                            ner_pointer_decoding_with_mapping,\
                            ner_pointer_double_decoding,ner_pointer_double_decoding_with_mapping

from bert_pretty.cls import cls_softmax_decoding,cls_sigmoid_decoding,load_labels as cls_load_labels


tokenizer = FullTokenizer(vocab_file=r'F:\pretrain\chinese_L-12_H-768_A-12\vocab.txt',do_lower_case=True)
text_list = ["你是谁123aa\ta嘂a","嘂adasd"]



def test():
    maxlen = 512
    do_lower_case = tokenizer.basic_tokenizer.do_lower_case
    inputs = [['[CLS]'] + tokenizer.tokenize(text)[:maxlen - 2] + ['[SEP]'] for text in text_list]
    mapping = [rematch(text, tokens, do_lower_case) for text, tokens in zip(text_list, inputs)]
    inputs = [tokenizer.convert_tokens_to_ids(input) for input in inputs]
    input_mask = [[1] * len(input) for input in inputs]
    input_segment = [[0] * len(input) for input in inputs]
    input_ids = seqs_padding(inputs)
    input_mask = seqs_padding(input_mask)
    input_segment = seqs_padding(input_segment)

    input_ids = np.asarray(input_ids, dtype=np.int32)
    input_mask = np.asarray(input_mask, dtype=np.int32)
    input_segment = np.asarray(input_segment, dtype=np.int32)

    print('input_ids\n', input_ids)
    print('mapping\n',mapping)
    print('input_mask\n',input_mask)
    print('input_segment\n',input_segment)
    print('\n\n')



def test_charlevel():
    do_lower_case = tokenizer.basic_tokenizer.do_lower_case
    maxlen = 512
    if do_lower_case:
        inputs = [['[CLS]'] + tokenizer.tokenize(text.lower())[:maxlen - 2] + ['[SEP]'] for text in text_list]
    else:
        inputs = [['[CLS]'] + tokenizer.tokenize(text)[:maxlen - 2] + ['[SEP]'] for text in text_list]
    inputs = [tokenizer.convert_tokens_to_ids(input) for input in inputs]
    input_mask = [[1] * len(input) for input in inputs]
    input_segment = [[0] * len(input) for input in inputs]
    input_ids = seqs_padding(inputs)
    input_mask = seqs_padding(input_mask)
    input_segment = seqs_padding(input_segment)

    input_ids = np.asarray(input_ids, dtype=np.int32)
    input_mask = np.asarray(input_mask, dtype=np.int32)
    input_segment = np.asarray(input_segment, dtype=np.int32)

    print('input_ids\n', input_ids)
    print('input_mask\n',input_mask)
    print('input_segment\n',input_segment)
    print('\n\n')

# labels = ['标签1','标签2']
# print(cls.load_labels(labels))
#
# print(ner.load_label_bio(labels))


'''
    # def ner_crf_decoding(batch_text, id2label, batch_logits, trans=None,batch_mapping=None,with_dict=True):
    ner crf decode 解析crf序列  or 解析 已经解析过的crf序列

    batch_text input_instance list , 
    id2label 标签 list or dict
    batch_logits 为bert 预测结果 logits_all (batch,seq_len,num_tags) or (batch,seq_len)
    trans 是否启用trans预测 , 2D 
    batch_mapping 映射序列
'''

'''
    def ner_pointer_decoding(batch_text, id2label, batch_logits, threshold=1e-8,coordinates_minus=False,with_dict=True)

    batch_text text list , 
    id2label 标签 list or dict
    batch_logits (batch,num_labels,seq_len,seq_len)
    threshold 阈值
    coordinates_minus
'''

'''
    def ner_pointer_decoding_with_mapping(batch_text, id2label, batch_logits, batch_mapping,threshold=1e-8,coordinates_minus=False,with_dict=True)

    batch_text text list , 
    id2label 标签 list or dict
    batch_logits (batch,num_labels,seq_len,seq_len)
    threshold 阈值
    coordinates_minus
'''


'''
    cls_softmax_decoding(batch_text, id2label, batch_logits,threshold=None)
    batch_text 文本list , 
    id2label 标签 list or dict
    batch_logits (batch,num_classes)
    threshold 阈值
'''

'''
    cls_sigmoid_decoding(batch_text, id2label, batch_logits,threshold=0.5)

    batch_text 文本list , 
    id2label 标签 list or dict
    batch_logits (batch,num_classes)
    threshold 阈值
'''


def test_cls_decode():
    num_label =3
    np.random.seed(123)
    batch_logits = np.random.rand(2,num_label)
    result = cls_softmax_decoding(text_list,['标签1','标签2','标签3'],batch_logits,threshold=None)
    print(result)


    batch_logits = np.random.rand(2,num_label)
    print(batch_logits)
    result = cls_sigmoid_decoding(text_list,['标签1','标签2','标签3'],batch_logits,threshold=0.5)
    print(result)





if __name__ == '__main__':
    test()
    test_charlevel()
    test_cls_decode()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

bert_pretty-0.1.0.post0-py3-none-any.whl (31.5 kB view details)

Uploaded Python 3

File details

Details for the file bert_pretty-0.1.0.post0-py3-none-any.whl.

File metadata

  • Download URL: bert_pretty-0.1.0.post0-py3-none-any.whl
  • Upload date:
  • Size: 31.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.8.9

File hashes

Hashes for bert_pretty-0.1.0.post0-py3-none-any.whl
Algorithm Hash digest
SHA256 52ff286e28f17f487c3486cced6c6a8db49a901f289370a18ee50cda52aa4b00
MD5 9008d9f1f3813bf27c6edbb88c574466
BLAKE2b-256 c19c9acd5b3443ae4079de0c83bdfe79ee04e2fa9b82634f9092ff9fb85092e6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page