Skip to main content

an elegant bert4torch

Project description

bert4torch

licence GitHub release PyPI PyPI - Downloads GitHub stars GitHub Issues contributions welcome Generic badge

Documentation | Torch4keras | Examples | build_MiniLLM_from_scratch | bert4vector

目录

1. 下载安装

安装稳定版

pip install bert4torch

安装最新版

pip install git+https://github.com/Tongjilibo/bert4torch
  • 注意事项:pip包的发布慢于git上的开发版本,git clone注意引用路径,注意权重是否需要转换
  • 测试用例git clone https://github.com/Tongjilibo/bert4torch,修改example中的预训练模型文件路径和数据路径即可启动脚本
  • 自行训练:针对自己的数据,修改相应的数据处理代码块
  • 开发环境:原使用torch==1.10版本进行开发,现已切换到torch2.0开发,如其他版本遇到不适配,欢迎反馈

2. 功能

  • LLM模型: 加载chatglm、llama、 baichuan、ziya、bloom等开源大模型权重进行推理和微调,命令行一行部署大模型

  • 核心功能:加载bert、roberta、albert、xlnet、nezha、bart、RoFormer、RoFormer_V2、ELECTRA、GPT、GPT2、T5、GAU-alpha、ERNIE等预训练权重继续进行finetune、并支持在bert基础上灵活定义自己模型

  • 丰富示例:包含llmpretrainsentence_classficationsentence_embeddingsequence_labelingrelation_extractionseq2seqserving等多种解决方案

  • 实验验证:已在公开数据集实验验证,使用如下examples数据集实验指标

  • 易用trick:集成了常见的trick,即插即用

  • 其他特性加载transformers库模型一起使用;调用方式简洁高效;有训练进度条动态展示;配合torchinfo打印参数量;默认Logger和Tensorboard简便记录训练过程;自定义fit过程,满足高阶需求

  • 训练过程

    训练过程

功能 bert4torch transformers 备注
训练进度条 进度条打印loss和定义的metrics
分布式训练dp/ddp torch自带dp/ddp
各类callbacks 日志/tensorboard/earlystop/wandb等
大模型推理,stream/batch输出 各个模型是通用的,无需单独维护脚本
大模型微调 lora依赖peft库,pv2自带
丰富tricks 对抗训练等tricks即插即用
代码简洁易懂,自定义空间大 代码复用度高, keras代码训练风格
仓库的维护能力/影响力/使用量/兼容性 目前仓库个人维护
一键部署大模型

3. 快速上手

3.1 上手教程

3.2 命令行快速部署大模型服务

  • 本地 / 联网加载
    # 联网下载全部文件
    bert4torch-llm-server --checkpoint_path Qwen2-0.5B-Instruct
    
    # 加载本地大模型,联网下载bert4torch_config.json
    bert4torch-llm-server --checkpoint_path /data/pretrain_ckpt/Qwen/Qwen2-0.5B-Instruct --config_path Qwen/Qwen2-0.5B-Instruct
    
    # 加载本地大模型,且bert4torch_config.json已经下载并放于同名目录下
    bert4torch-llm-server --checkpoint_path /data/pretrain_ckpt/Qwen/Qwen2-0.5B-Instruct
    
  • 命令行 / gradio网页 / openai_api
    # 命令行
    bert4torch-llm-server --checkpoint_path /data/pretrain_ckpt/Qwen/Qwen2-0.5B-Instruct --mode cli
    
    # gradio网页
    bert4torch-llm-server --checkpoint_path /data/pretrain_ckpt/Qwen/Qwen2-0.5B-Instruct --mode gradio
    
    # openai_api
    bert4torch-llm-server --checkpoint_path /data/pretrain_ckpt/Qwen/Qwen2-0.5B-Instruct --mode openai
    
  • 命令行聊天示例 命令行聊天

4. 版本和更新历史

4.1 版本历史

更新日期 bert4torch torch4keras 版本说明
20240928 0.5.4 0.2.7 【新功能】增加deepseek系列、MiniCPM、MiniCPMV、llama3.2、Qwen2.5;支持device_map=auto;【修复】修复batch_generate和n>1的bug
20240814 0.5.3 0.2.6 【新功能】增加llama3.1/Yi1.5;自动选择从hfmirror下载;支持命令行参数bert4torch-llm-server
20240801 0.5.2 0.2.5 【新功能】chatglm/qwen系列支持function call调用, 增加internlm2系列;【小优化】简化pipeline中chat demo的调用,generate的终止token元素允许为列表, 统一rope_scaling参数名,增加rope衍生类;【bug】修复flash_attn2的推理bug, 修复bart的tie_word_embedding的bug

更多版本

4.2 更新历史

更多历史

5. 预训练权重

  • 预训练模型支持多种代码加载方式

    from bert4torch.models import build_transformer_model
    
    # 1. 仅指定config_path: 从头初始化模型结构, 不加载预训练模型
    model = build_transformer_model('./model/bert4torch_config.json')
    
    # 2. 仅指定checkpoint_path: 
    ## 2.1 文件夹路径: 自动寻找路径下的*.bin/*.safetensors权重文件 + 需把bert4torch_config.json下载并放于该目录下
    model = build_transformer_model(checkpoint_path='./model')
    
    ## 2.2 文件路径/列表: 文件路径即权重路径/列表, bert4torch_config.json会从同级目录下寻找
    model = build_transformer_model(checkpoint_path='./pytorch_model.bin')
    
    ## 2.3 model_name: hf上预训练权重名称, 会自动下载hf权重以及bert4torch_config.json文件
    model = build_transformer_model(checkpoint_path='bert-base-chinese')
    
    # 3. 同时指定config_path和checkpoint_path(本地路径名或model_name排列组合): 
    #    本地路径从本地加载,pretrained_model_name会联网下载
    config_path = './model/bert4torch_config.json'  # 或'bert-base-chinese'
    checkpoint_path = './model/pytorch_model.bin'  # 或'bert-base-chinese'
    model = build_transformer_model(config_path, checkpoint_path)
    
  • 预训练权重链接和bert4torch_config.json

模型分类 模型名称 权重来源 权重链接/checkpoint_path config_path
bert bert-base-chinese google-bert bert-base-chinese bert-base-chinese
chinese_L-12_H-768_A-12 谷歌 tf权重
Tongjilibo/bert-chinese_L-12_H-768_A-12
chinese-bert-wwm-ext HFL hfl/chinese-bert-wwm-ext hfl/chinese-bert-wwm-ext
bert-base-multilingual-cased google-bert bert-base-multilingual-cased bert-base-multilingual-cased
MacBERT HFL hfl/chinese-macbert-base
hfl/chinese-macbert-large
hfl/chinese-macbert-base
hfl/chinese-macbert-large
WoBERT 追一科技 junnyu/wobert_chinese_basejunnyu/wobert_chinese_plus_base junnyu/wobert_chinese_base
junnyu/wobert_chinese_plus_base
roberta chinese-roberta-wwm-ext HFL hfl/chinese-roberta-wwm-ext
hfl/chinese-roberta-wwm-ext-large
(large的mlm权重是随机初始化)
hfl/chinese-roberta-wwm-ext
hfl/chinese-roberta-wwm-ext-large
roberta-small/tiny 追一科技 Tongjilibo/chinese_roberta_L-4_H-312_A-12
Tongjilibo/chinese_roberta_L-6_H-384_A-12
roberta-base FacebookAI roberta-base roberta-base
guwenbert ethanyt ethanyt/guwenbert-base ethanyt/guwenbert-base
albert albert_zh
albert_pytorch
brightmart voidful/albert_chinese_tiny
voidful/albert_chinese_small
voidful/albert_chinese_base
voidful/albert_chinese_large
voidful/albert_chinese_xlarge
voidful/albert_chinese_xxlarge
voidful/albert_chinese_tinyvoidful/albert_chinese_small
voidful/albert_chinese_base
voidful/albert_chinese_large
voidful/albert_chinese_xlarge
voidful/albert_chinese_xxlarge
nezha NEZHA
NeZha_Chinese_PyTorch
huawei_noah sijunhe/nezha-cn-base
sijunhe/nezha-cn-large
sijunhe/nezha-base-wwm
sijunhe/nezha-large-wwm
sijunhe/nezha-cn-base
sijunhe/nezha-cn-large
sijunhe/nezha-base-wwm
sijunhe/nezha-large-wwm
nezha_gpt_dialog bojone Tongjilibo/nezha_gpt_dialog
xlnet Chinese-XLNet HFL hfl/chinese-xlnet-base hfl/chinese-xlnet-base
tranformer_xl huggingface transfo-xl/transfo-xl-wt103 transfo-xl/transfo-xl-wt103
deberta Erlangshen-DeBERTa-v2 IDEA IDEA-CCNL/Erlangshen-DeBERTa-v2-97M-Chinese
IDEA-CCNL/Erlangshen-DeBERTa-v2-320M-Chinese
IDEA-CCNL/Erlangshen-DeBERTa-v2-710M-Chinese
IDEA-CCNL/Erlangshen-DeBERTa-v2-97M-Chinese
IDEA-CCNL/Erlangshen-DeBERTa-v2-320M-Chinese
IDEA-CCNL/Erlangshen-DeBERTa-v2-710M-Chinese
electra Chinese-ELECTRA HFL hfl/chinese-electra-base-discriminator hfl/chinese-electra-base-discriminator
ernie ernie 百度文心 nghuyong/ernie-1.0-base-zh
nghuyong/ernie-3.0-base-zh
nghuyong/ernie-1.0-base-zh
nghuyong/ernie-3.0-base-zh
roformer roformer 追一科技 junnyu/roformer_chinese_base junnyu/roformer_chinese_base
roformer_v2 追一科技 junnyu/roformer_v2_chinese_char_base junnyu/roformer_v2_chinese_char_base
simbert simbert 追一科技 Tongjilibo/simbert-chinese-base
Tongjilibo/simbert-chinese-small
Tongjilibo/simbert-chinese-tiny
simbert_v2/roformer-sim 追一科技 junnyu/roformer_chinese_sim_char_basejunnyu/roformer_chinese_sim_char_ft_basejunnyu/roformer_chinese_sim_char_smalljunnyu/roformer_chinese_sim_char_ft_small junnyu/roformer_chinese_sim_char_base
junnyu/roformer_chinese_sim_char_ft_base
junnyu/roformer_chinese_sim_char_small
junnyu/roformer_chinese_sim_char_ft_small
gau GAU-alpha 追一科技 Tongjilibo/chinese_GAU-alpha-char_L-24_H-768
uie uie
uie_pytorch
百度 Tongjilibo/uie-base
gpt CDial-GPT thu-coai thu-coai/CDial-GPT_LCCC-base
thu-coai/CDial-GPT_LCCC-large
thu-coai/CDial-GPT_LCCC-base
thu-coai/CDial-GPT_LCCC-large
cmp_lm(26亿) 清华 TsinghuaAI/CPM-Generate TsinghuaAI/CPM-Generate
nezha_gen huawei_noah Tongjilibo/chinese_nezha_gpt_L-12_H-768_A-12
gpt2-chinese-cluecorpussmall UER uer/gpt2-chinese-cluecorpussmall uer/gpt2-chinese-cluecorpussmall
gpt2-ml imcaspar torch
BaiduYun(84dh)
gpt2-ml_15g_corpus
gpt2-ml_30g_corpus
bart bart_base_chinese 复旦fnlp fnlp/bart-base-chinese
v1.0
fnlp/bart-base-chinese
fnlp/bart-base-chinese-v1.0
t5 t5 UER uer/t5-small-chinese-cluecorpussmall
uer/t5-base-chinese-cluecorpussmall
uer/t5-base-chinese-cluecorpussmall
uer/t5-small-chinese-cluecorpussmall
mt5 谷歌 google/mt5-base google/mt5-base
t5_pegasus 追一科技 Tongjilibo/chinese_t5_pegasus_small
Tongjilibo/chinese_t5_pegasus_base
chatyuan clue-ai ClueAI/ChatYuan-large-v1
ClueAI/ChatYuan-large-v2
ClueAI/ChatYuan-large-v1
ClueAI/ChatYuan-large-v2
PromptCLUE clue-ai ClueAI/PromptCLUE-base ClueAI/PromptCLUE-base
chatglm chatglm-6b THUDM THUDM/chatglm-6b
THUDM/chatglm-6b-int8
THUDM/chatglm-6b-int4
v0.1.0
THUDM/chatglm-6b
THUDM/chatglm-6b-int8
THUDM/chatglm-6b-int4
THUDM/chatglm-6b-v0.1.0
chatglm2-6b THUDM THUDM/chatglm2-6b
THUDM/chatglm2-6b-int4
THUDM/chatglm2-6b-32k
THUDM/chatglm2-6b
THUDM/chatglm2-6b-int4
THUDM/chatglm2-6b-32k
chatglm3-6b THUDM THUDM/chatglm3-6b
THUDM/chatglm3-6b-32k
THUDM/chatglm3-6b
THUDM/chatglm3-6b-32k
glm4-9b THUDM THUDM/glm-4-9b
THUDM/glm-4-9b-chat
THUDM/glm-4-9b-chat-1m
THUDM/glm-4-9b
THUDM/glm-4-9b-chat
THUDM/glm-4-9b-chat-1m
llama llama meta llama-7b
llama-13b
llama-2 meta meta-llama/Llama-2-7b-hf
meta-llama/Llama-2-7b-chat-hf
meta-llama/Llama-2-13b-hf
meta-llama/Llama-2-13b-chat-hf
meta-llama/Llama-2-7b-hf
meta-llama/Llama-2-7b-chat-hf
meta-llama/Llama-2-13b-hf
meta-llama/Llama-2-13b-chat-hf
llama-3 meta meta-llama/Meta-Llama-3-8B
meta-llama/Meta-Llama-3-8B-Instruct
meta-llama/Meta-Llama-3-8B
meta-llama/Meta-Llama-3-8B-Instruct
llama-3.1 meta meta-llama/Meta-Llama-3.1-8B
meta-llama/Meta-Llama-3.1-8B-Instruct
meta-llama/Meta-Llama-3.1-8B
meta-llama/Meta-Llama-3.1-8B-Instruct
llama-3.2 meta meta-llama/Llama-3.2-1B
meta-llama/Llama-3.2-1B-Instruct
meta-llama/Llama-3.2-3B
meta-llama/Llama-3.2-3B-Instruct
meta-llama/Llama-3.2-1B
meta-llama/Llama-3.2-1B-Instruct
meta-llama/Llama-3.2-3B
meta-llama/Llama-3.2-3B-Instruct
Chinese-LLaMA-Alpaca HFL chinese_alpaca_plus_7b
chinese_llama_plus_7b
Chinese-LLaMA-Alpaca-2 HFL 待添加
Chinese-LLaMA-Alpaca-3 HFL 待添加
Belle_llama LianjiaTech BelleGroup/BELLE-LLaMA-7B-2M-enc 合成说明BELLE-LLaMA-7B-2M-enc
Ziya IDEA-CCNL IDEA-CCNL/Ziya-LLaMA-13B-v1
IDEA-CCNL/Ziya-LLaMA-13B-v1.1
IDEA-CCNL/Ziya-LLaMA-13B-Pretrain-v1
IDEA-CCNL/Ziya-LLaMA-13B-v1
IDEA-CCNL/Ziya-LLaMA-13B-v1.1
vicuna lmsys lmsys/vicuna-7b-v1.5 lmsys/vicuna-7b-v1.5
Baichuan Baichuan baichuan-inc baichuan-inc/Baichuan-7B
baichuan-inc/Baichuan-13B-Base
baichuan-inc/Baichuan-13B-Chat
baichuan-inc/Baichuan-7B
baichuan-inc/Baichuan-13B-Base
baichuan-inc/Baichuan-13B-Chat
Baichuan2 baichuan-inc baichuan-inc/Baichuan2-7B-Base
baichuan-inc/Baichuan2-7B-Chat
baichuan-inc/Baichuan2-13B-Base
baichuan-inc/Baichuan2-13B-Chat
baichuan-inc/Baichuan2-7B-Base
baichuan-inc/Baichuan2-7B-Chat
baichuan-inc/Baichuan2-13B-Base
baichuan-inc/Baichuan2-13B-Chat
Yi Yi 01-ai 01-ai/Yi-6B
01-ai/Yi-6B-200K
01-ai/Yi-9B
01-ai/Yi-9B-200K
01-ai/Yi-6B
01-ai/Yi-6B-200K
01-ai/Yi-9B
01-ai/Yi-9B-200K
Yi-1.5 01-ai 01-ai/Yi-1.5-6B
01-ai/Yi-1.5-6B-Chat
01-ai/Yi-1.5-9B
01-ai/Yi-1.5-9B-32K
01-ai/Yi-1.5-9B-Chat
01-ai/Yi-1.5-9B-Chat-16K
01-ai/Yi-1.5-6B
01-ai/Yi-1.5-6B-Chat
01-ai/Yi-1.5-9B
01-ai/Yi-1.5-9B-32K
01-ai/Yi-1.5-9B-Chat
01-ai/Yi-1.5-9B-Chat-16K
bloom bloom bigscience bigscience/bloom-560m
bigscience/bloomz-560m
bigscience/bloom-560m
bigscience/bloomz-560m
Qwen Qwen 阿里云 Qwen/Qwen-1_8B
Qwen/Qwen-1_8B-Chat
Qwen/Qwen-7B
Qwen/Qwen-7B-Chat
Qwen/Qwen-14B
Qwen/Qwen-14B-Chat
Qwen/Qwen-1_8B
Qwen/Qwen-1_8B-Chat
Qwen/Qwen-7B
Qwen/Qwen-7B-Chat
Qwen/Qwen-14B
Qwen/Qwen-14B-Chat
Qwen1.5 阿里云 Qwen/Qwen1.5-0.5B
Qwen/Qwen1.5-0.5B-Chat
Qwen/Qwen1.5-1.8B
Qwen/Qwen1.5-1.8B-Chat
Qwen/Qwen1.5-7B
Qwen/Qwen1.5-7B-Chat
Qwen/Qwen1.5-14B
Qwen/Qwen1.5-14B-Chat
Qwen/Qwen1.5-0.5B
Qwen/Qwen1.5-0.5B-Chat
Qwen/Qwen1.5-1.8B
Qwen/Qwen1.5-1.8B-Chat
Qwen/Qwen1.5-7B
Qwen/Qwen1.5-7B-Chat
Qwen/Qwen1.5-14B
Qwen/Qwen1.5-14B-Chat
Qwen2 阿里云 Qwen/Qwen2-0.5B
Qwen/Qwen2-0.5B-Instruct
Qwen/Qwen2-1.5B
Qwen/Qwen2-1.5B-Instruct
Qwen/Qwen2-7B
Qwen/Qwen2-7B-Instruct
Qwen/Qwen2-0.5B
Qwen/Qwen2-0.5B-Instruct
Qwen/Qwen2-1.5B
Qwen/Qwen2-1.5B-Instruct
Qwen/Qwen2-7B
Qwen/Qwen2-7B-Instruct
Qwen2.5 阿里云 Qwen/Qwen2.5-0.5B
Qwen/Qwen2.5-0.5B-Instruct
Qwen/Qwen2.5-1.5B
Qwen/Qwen2.5-1.5B-Instruct
Qwen/Qwen2.5-3B
Qwen/Qwen2.5-3B-Instruct
Qwen/Qwen2.5-7B
Qwen/Qwen2.5-7B-Instruct
Qwen/Qwen2.5-14B
Qwen/Qwen2.5-14B-Instruct
Qwen/Qwen2.5-0.5B
Qwen/Qwen2.5-0.5B-Instruct
Qwen/Qwen2.5-1.5B
Qwen/Qwen2.5-1.5B-Instruct
Qwen/Qwen2.5-3B
Qwen/Qwen2.5-3B-Instruct
Qwen/Qwen2.5-7B
Qwen/Qwen2.5-7B-Instruct
Qwen/Qwen2.5-14B
Qwen/Qwen2.5-14B-Instruct
InternLM InternLM 上海人工智能实验室 internlm/internlm-7b
internlm/internlm-chat-7b
internlm/internlm-7b
internlm/internlm-chat-7b
InternLM2 上海人工智能实验室 internlm/internlm2-1_8b
internlm/internlm2-chat-1_8b
internlm/internlm2-7b
internlm/internlm2-chat-7b
internlm/internlm2-20b
internlm/internlm2-chat-20b
internlm/internlm2-1_8b
internlm/internlm2-chat-1_8b
internlm/internlm2-7b
internlm/internlm2-chat-7b
InternLM2.5 上海人工智能实验室 internlm/internlm2_5-7b
internlm/internlm2_5-7b-chat
internlm/internlm2_5-7b-chat-1m
internlm/internlm2_5-7b
internlm/internlm2_5-7b-chat
internlm/internlm2_5-7b-chat-1m
Falcon Falcon tiiuae tiiuae/falcon-rw-1b
tiiuae/falcon-7b
tiiuae/falcon-7b-instruct
tiiuae/falcon-rw-1b
tiiuae/falcon-7b
tiiuae/falcon-7b-instruct
DeepSeek DeepSeek-MoE 深度求索 deepseek-ai/deepseek-moe-16b-base
deepseek-ai/deepseek-moe-16b-chat
deepseek-ai/deepseek-moe-16b-base
deepseek-ai/deepseek-moe-16b-chat
DeepSeek-LLM 深度求索 deepseek-ai/deepseek-llm-7b-base
deepseek-ai/deepseek-llm-7b-chat
deepseek-ai/deepseek-llm-7b-base
deepseek-ai/deepseek-llm-7b-chat
DeepSeek-V2 深度求索 deepseek-ai/DeepSeek-V2-Lite
deepseek-ai/DeepSeek-V2-Lite-Chat
deepseek-ai/DeepSeek-V2-Lite
deepseek-ai/DeepSeek-V2-Lite-Chat
DeepSeek-Coder 深度求索 deepseek-ai/deepseek-coder-1.3b-base
deepseek-ai/deepseek-coder-1.3b-instruct
deepseek-ai/deepseek-coder-6.7b-base
deepseek-ai/deepseek-coder-6.7b-instruct
deepseek-ai/deepseek-coder-7b-base-v1.5
deepseek-ai/deepseek-coder-7b-instruct-v1.5
deepseek-ai/deepseek-coder-1.3b-base
deepseek-ai/deepseek-coder-1.3b-instruct
deepseek-ai/deepseek-coder-6.7b-base
deepseek-ai/deepseek-coder-6.7b-instruct
deepseek-ai/deepseek-coder-7b-base-v1.5
deepseek-ai/deepseek-coder-7b-instruct-v1.5
DeepSeek-Coder-V2 深度求索 deepseek-ai/DeepSeek-Coder-V2-Lite-Base
deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
deepseek-ai/DeepSeek-Coder-V2-Lite-Base
deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
DeepSeek-Math 深度求索 deepseek-ai/deepseek-math-7b-base
deepseek-ai/deepseek-math-7b-instruct
deepseek-ai/deepseek-math-7b-rl
deepseek-ai/deepseek-math-7b-base
deepseek-ai/deepseek-math-7b-instruct
deepseek-ai/deepseek-math-7b-rl
MiniCPM MiniCPM OpenBMB openbmb/MiniCPM-2B-sft-bf16
openbmb/MiniCPM-2B-dpo-bf16
openbmb/MiniCPM-2B-128k
openbmb/MiniCPM-1B-sft-bf16
openbmb/MiniCPM-2B-sft-bf16
openbmb/MiniCPM-2B-dpo-bf16
openbmb/MiniCPM-2B-128k
openbmb/MiniCPM-1B-sft-bf16
MiniCPM-V OpenBMB openbmb/MiniCPM-V-2_6
openbmb/MiniCPM-Llama3-V-2_5
openbmb/MiniCPM-V-2_6
openbmb/MiniCPM-Llama3-V-2_5
embedding text2vec-base-chinese shibing624 shibing624/text2vec-base-chinese shibing624/text2vec-base-chinese
m3e moka-ai moka-ai/m3e-base moka-ai/m3e-base
bge BAAI BAAI/bge-large-en-v1.5
BAAI/bge-large-zh-v1.5
BAAI/bge-base-en-v1.5
BAAI/bge-base-zh-v1.5
BAAI/bge-small-en-v1.5
BAAI/bge-small-zh-v1.5
bge-large-en-v1.5
bge-large-zh-v1.5
bge-base-en-v1.5
bge-base-zh-v1.5
bge-small-en-v1.5
bge-small-zh-v1.5
gte thenlper thenlper/gte-large-zh
thenlper/gte-base-zh
thenlper/gte-base-zh
thenlper/gte-large-zh

*注:

  1. 高亮格式(如bert-base-chinese)的表示可直接build_transformer_model()联网下载
  2. 国内镜像网站加速下载
    • HF_ENDPOINT=https://hf-mirror.com python your_script.py
    • export HF_ENDPOINT=https://hf-mirror.com后再执行python代码
    • 在python代码开头如下设置
    import os
    os.environ['HF_ENDPOINT'] = "https://hf-mirror.com"
    

6. 鸣谢

  • 感谢苏神实现的bert4keras,本实现有不少地方参考了bert4keras的源码,在此衷心感谢大佬的无私奉献;
  • 其次感谢项目bert4pytorch,也是在该项目的指引下给了我用pytorch来复现bert4keras的想法和思路。

7. 引用

@misc{bert4torch,
  title={bert4torch},
  author={Bo Li},
  year={2022},
  howpublished={\url{https://github.com/Tongjilibo/bert4torch}},
}

8. 其他

  • Wechat & Star History Chart
  • 微信群人数超过200个(有邀请限制),可添加个人微信拉群
pic
微信号
pic
微信群
pic
Star History Chart

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bert4torch-0.5.4.tar.gz (237.8 kB view details)

Uploaded Source

File details

Details for the file bert4torch-0.5.4.tar.gz.

File metadata

  • Download URL: bert4torch-0.5.4.tar.gz
  • Upload date:
  • Size: 237.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.8

File hashes

Hashes for bert4torch-0.5.4.tar.gz
Algorithm Hash digest
SHA256 67276e1abbff78d2fd87f153fa3a295a7e006f691f938ff8107776e4def38107
MD5 d2bc176beabc67059cdce4d94114fa0b
BLAKE2b-256 36d4b9c1691ebd6016143562ff837dfe02576e28d47a16238e2085263a1f8bb4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page