Skip to main content

Algorithm for best choice

Project description

best-choice

1 - pip Install

pip install best-choice

2 - all function

#library
from bestchoice import Generate

#data
#object,price,importance level
table = [['pants',75,10],
         ['jeans',50,7],
         ['shirt',45,8],
         ['dress',65,7],
         ['ball',25,5]]

#call function generate
gen = Generate(table)

#all possibilities
for x in gen.list_all():
  print(x)

#call function to generate calculation results
#parameters 1 and 2 are columns for calculation
#in this case, the price and importance level
calc = gen.list_results([1,2])

#all calculated results
for x in calc:f
  print(x)

#new table after filter
#the first parameter 1 and 2 are index columns
#the second parameter 1 <= 200 filter your new table  
new = gen.list_best([1,2],[[1,'<=',200]])

#all filtered results
for x in new:
  print(x)

3 - example to find best choice

#library
from bestchoice import Generate

#data
#object,price,importance level
table = [['pants',75,10],
         ['jeans',50,7],
         ['shirt',45,8],
         ['dress',65,7],
         ['ball',25,5]]

#column for calculation
#in this case, the price and importance level
columns = [1,2]

#index of column importance
importance = 2

#filters where 1 is the price <= 200 dollars
filters = [[1,'<=',200]]

#call function generate
gen = Generate(table)

#get all possibilities
lista = gen.list_all()

#new table after filter
#the first parameter 1 and 2 are index columns
#the second parameter 1 <= price filter your new table 
res = gen.list_best(columns,filters)

#saves the best filtered result
top = max([sublist[-1] for sublist in res])

filters.append([importance,'==',top])
#table with new result
new = gen.list_best(columns,filters)

#set index of top values
best = [x[0] for x in new][0]

#result
print(f'This is your best choice: {", ".join([str(x[0]) for x in lista[best]])}')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

best-choice-0.0.1.tar.gz (3.1 kB view details)

Uploaded Source

Built Distribution

best_choice-0.0.1-py3-none-any.whl (3.3 kB view details)

Uploaded Python 3

File details

Details for the file best-choice-0.0.1.tar.gz.

File metadata

  • Download URL: best-choice-0.0.1.tar.gz
  • Upload date:
  • Size: 3.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.0

File hashes

Hashes for best-choice-0.0.1.tar.gz
Algorithm Hash digest
SHA256 b10b29980663d0675d979f8746322af6dbf6852bab3d0c8990df3383f17dc47e
MD5 90b1d73b0b5021b1da0d130ca26347c6
BLAKE2b-256 f3b2f9b8ea5f2fddc3c7c9af35145d5f6a9a3354239d638eab68770ac0cd0b69

See more details on using hashes here.

File details

Details for the file best_choice-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: best_choice-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 3.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.0

File hashes

Hashes for best_choice-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f4395d1f4b8792a31d7339a41913da6428eb681fe1f77686fb4393a0439cc79b
MD5 0b07c2020374e74672f8c31c051c12b3
BLAKE2b-256 7ee785445a9df5a4d8fc6860adbfaceae5284c2af6581eab08ec4123d8bfbe2a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page