It helps to find the best Regression model with the help of the Root Mean Square Value (RMSE) for the given regression model based on the given dataset
Project description
Best Regression Model is used for supervised learning techniques where the target data is in continous form. It selects the best model from the eight regression model based on the Root Mean Square Value (RMSE).
The eight regression model used in the given library are:
- Linear Regression
- Ridge Regression
- Lasso Regression
- ElasticNet Regression
- Random Forest Regression
- Support Vector Regression
- Extra Trees Regression
- Decision Tree Regression
User installation
If you already have a working installation of numpy, scipy and sklearn, the easiest way to install best-classification-model is using pip
pip install best-regression-model
Important links
Official source code repo: https://github.com/ronakkkk/best_regression_model
Download releases: https://pypi.org/project/best-regression-model/
Examples
from best_regression_model import regression_models
import pandas
data = pandas.read_csv('Data.csv')
X = data.iloc[:, :-1]
Y = data['Target']
best_model, best_model_name, acc = regression_models.reg_model(X, Y)
print(best_model_name, " (RMSE):", acc)```
`__Output__:
ElasticNet Regression (RMSE):621.2574962618987`
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file best_regression_model-0.1.1.tar.gz
.
File metadata
- Download URL: best_regression_model-0.1.1.tar.gz
- Upload date:
- Size: 2.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 521ca7714864ed55be4e366e9077cd8cb7859fd06c82fd3a4c4501ed28113554 |
|
MD5 | 632de7e1bd80836e4da33101202104ec |
|
BLAKE2b-256 | 550b18af21e0394b56ec18f25852e2bd229f6924c7a4d9dda4be7176c1135e8e |