Skip to main content

It helps to find the best Regression model with the help of the Root Mean Square Value (RMSE) for the given regression model based on the given dataset

Project description

Best Regression Model is used for supervised learning techniques where the target data is in continous form. It selects the best model from the eight regression model based on the Root Mean Square Value (RMSE).

The eight regression model used in the given library are:

  1. Linear Regression
  2. Ridge Regression
  3. Lasso Regression
  4. ElasticNet Regression
  5. Random Forest Regression
  6. Support Vector Regression
  7. Extra Trees Regression
  8. Decision Tree Regression

User installation

If you already have a working installation of numpy, scipy and sklearn, the easiest way to install best-classification-model is using pip

pip install best-regression-model

Important links

Official source code repo: https://github.com/ronakkkk/best_regression_model

Download releases: https://pypi.org/project/best-regression-model/

Examples

from best_regression_model import regression_models

import pandas

data = pandas.read_csv('Data.csv')

X = data.iloc[:, :-1]

Y = data['Target']

best_model, best_model_name, acc = regression_models.reg_model(X, Y)

print(best_model_name, " (RMSE):", acc)```

`__Output__:

ElasticNet Regression (RMSE):621.2574962618987`

 

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

best_regression_model-0.1.1.tar.gz (2.5 kB view details)

Uploaded Source

File details

Details for the file best_regression_model-0.1.1.tar.gz.

File metadata

  • Download URL: best_regression_model-0.1.1.tar.gz
  • Upload date:
  • Size: 2.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for best_regression_model-0.1.1.tar.gz
Algorithm Hash digest
SHA256 521ca7714864ed55be4e366e9077cd8cb7859fd06c82fd3a4c4501ed28113554
MD5 632de7e1bd80836e4da33101202104ec
BLAKE2b-256 550b18af21e0394b56ec18f25852e2bd229f6924c7a4d9dda4be7176c1135e8e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page