Skip to main content

A Python package for finding the best decision tree parameters.

Project description

bestree

Under construction.


Developed by CodingLive from ProtDos (c) 2022

##Installation

pip install bestree

Requirements

  • Python (>= 3.8)

  • NumPy (>= 1.17.3)

  • ScikitLearn

  • Pandas

Usage

All best features

from bestree import best_all

from sklearn.tree import DecisionTreeClassifier



from sklearn.datasets import make_blobs # To create random X and y data

X, y = make_blobs(n_samples=100, n_features=2, centers=3, random_state=0)



criterion, max_depths, split, state = best_all(X, y)



clf = DecisionTreeClassifier(max_depth=max_depths, criterion=criterion, min_samples_split=split, random_state=state)

# your script

Choosing the best criterion

from bestree import best_criterion #For pandas objects

from bestree import best_criterion_norm #For other objects

from sklearn.tree import DecisionTreeClassifier



from sklearn.datasets import make_blobs # To create random X and y data

X, y = make_blobs(n_samples=100, n_features=2, centers=3, random_state=0)



criterion = best_criterion_norm(X, y)

print(criterion)



clf = DecisionTreeClassifier(criterion=criterion)

# your script

Choosing the best max_depth value

from bestree import best_depth

from sklearn.tree import DecisionTreeClassifier



from sklearn.datasets import make_blobs # To create random X and y data

X, y = make_blobs(n_samples=100, n_features=2, centers=3, random_state=0)



max_depth = best_depth(X, y, criterion="gini")



clf = DecisionTreeClassifier(max_depth=max_depth)

# your script

Choosing the best splitter

from bestree import best_splitter

from sklearn.tree import DecisionTreeClassifier



from sklearn.datasets import make_blobs # To create random X and y data

X, y = make_blobs(n_samples=100, n_features=2, centers=3, random_state=0)



max_depths = 3

criterion = "gini"



split = best_splitter(X, y, max_depths, criterion=criterion)



clf = DecisionTreeClassifier(min_samples_split=split)

# your script

Choosing the best state

from bestree import best_state

from sklearn.tree import DecisionTreeClassifier



from sklearn.datasets import make_blobs # To create random X and y data

X, y = make_blobs(n_samples=100, n_features=2, centers=3, random_state=0)



max_depths = 3

criterion = "gini"



state = best_state(X, y, max_depths, criterion=criterion)



clf = DecisionTreeClassifier(random_state=state)

# your script

Help & Support

Communication:

Conclusion

Thanks for everybody that supported me (nobody)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bestree-0.1.0.tar.gz (3.9 kB view details)

Uploaded Source

Built Distribution

bestree-0.1.0-py3-none-any.whl (4.0 kB view details)

Uploaded Python 3

File details

Details for the file bestree-0.1.0.tar.gz.

File metadata

  • Download URL: bestree-0.1.0.tar.gz
  • Upload date:
  • Size: 3.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.7

File hashes

Hashes for bestree-0.1.0.tar.gz
Algorithm Hash digest
SHA256 c1a2b8659c2c3dd3bdbfa6f423b15f78e099a38f315d180843cdcba4be123f73
MD5 2e0147c533738668bfb33262d3ff394e
BLAKE2b-256 db8d0bd8e3d8cfd672d328b8012f80bb41a4181b2e77bc843275806e3e2cfbae

See more details on using hashes here.

File details

Details for the file bestree-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: bestree-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 4.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.7

File hashes

Hashes for bestree-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9203011a2beadfca728e68811d0a35c5f0f9064643abbe929ab501c020f4c586
MD5 66316a8e6f054e397a8d72b1edc6ca2d
BLAKE2b-256 f5a25b52dbd3075ad0da113dd0e73c2153e142637e12b8dcf75a8b54ca40abf4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page