A Python package for finding the best decision tree parameters.
Project description
bestree
Under construction.
Developed by CodingLive from ProtDos (c) 2022
##Installation
pip install bestree
Requirements
-
Python (>= 3.8)
-
NumPy (>= 1.17.3)
-
ScikitLearn
-
Pandas
Usage
All best features
from bestree import best_all
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import make_blobs # To create random X and y data
X, y = make_blobs(n_samples=100, n_features=2, centers=3, random_state=0)
criterion, max_depths, split, state = best_all(X, y)
clf = DecisionTreeClassifier(max_depth=max_depths, criterion=criterion, min_samples_split=split, random_state=state)
# your script
Choosing the best criterion
from bestree import best_criterion #For pandas objects
from bestree import best_criterion_norm #For other objects
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import make_blobs # To create random X and y data
X, y = make_blobs(n_samples=100, n_features=2, centers=3, random_state=0)
criterion = best_criterion_norm(X, y)
print(criterion)
clf = DecisionTreeClassifier(criterion=criterion)
# your script
Choosing the best max_depth value
from bestree import best_depth
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import make_blobs # To create random X and y data
X, y = make_blobs(n_samples=100, n_features=2, centers=3, random_state=0)
max_depth = best_depth(X, y, criterion="gini")
clf = DecisionTreeClassifier(max_depth=max_depth)
# your script
Choosing the best splitter
from bestree import best_splitter
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import make_blobs # To create random X and y data
X, y = make_blobs(n_samples=100, n_features=2, centers=3, random_state=0)
max_depths = 3
criterion = "gini"
split = best_splitter(X, y, max_depths, criterion=criterion)
clf = DecisionTreeClassifier(min_samples_split=split)
# your script
Choosing the best state
from bestree import best_state
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import make_blobs # To create random X and y data
X, y = make_blobs(n_samples=100, n_features=2, centers=3, random_state=0)
max_depths = 3
criterion = "gini"
state = best_state(X, y, max_depths, criterion=criterion)
clf = DecisionTreeClassifier(random_state=state)
# your script
Help & Support
Communication:
-
Mail: rootcode@duck.com
-
Website: https://protdos.com
-
Discord: https://discord.gg/Xtk4XbwW4Z
-
Reddit: https://reddit.com/u/ProtDos
-
Twitter: https://twitter.com/ProtDos
Conclusion
Thanks for everybody that supported me (nobody)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
bestree-0.1.0.tar.gz
(3.9 kB
view details)
Built Distribution
File details
Details for the file bestree-0.1.0.tar.gz
.
File metadata
- Download URL: bestree-0.1.0.tar.gz
- Upload date:
- Size: 3.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c1a2b8659c2c3dd3bdbfa6f423b15f78e099a38f315d180843cdcba4be123f73 |
|
MD5 | 2e0147c533738668bfb33262d3ff394e |
|
BLAKE2b-256 | db8d0bd8e3d8cfd672d328b8012f80bb41a4181b2e77bc843275806e3e2cfbae |
File details
Details for the file bestree-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: bestree-0.1.0-py3-none-any.whl
- Upload date:
- Size: 4.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9203011a2beadfca728e68811d0a35c5f0f9064643abbe929ab501c020f4c586 |
|
MD5 | 66316a8e6f054e397a8d72b1edc6ca2d |
|
BLAKE2b-256 | f5a25b52dbd3075ad0da113dd0e73c2153e142637e12b8dcf75a8b54ca40abf4 |