Skip to main content

A Python package for finding the best decision tree parameters.

Project description

bestree

Under construction.


Developed by CodingLive from ProtDos (c) 2022

##Installation

pip install bestree

Requirements

  • Python (>= 3.8)

  • NumPy (>= 1.17.3)

  • ScikitLearn

  • Pandas

Usage

All best features

from bestree import best_all

from sklearn.tree import DecisionTreeClassifier



from sklearn.datasets import make_blobs # To create random X and y data

X, y = make_blobs(n_samples=100, n_features=2, centers=3, random_state=0)



criterion, max_depths, split, state = best_all(X, y)



clf = DecisionTreeClassifier(max_depth=max_depths, criterion=criterion, min_samples_split=split, random_state=state)

# your script

Choosing the best criterion

from bestree import best_criterion #For pandas objects

from bestree import best_criterion_norm #For other objects

from sklearn.tree import DecisionTreeClassifier



from sklearn.datasets import make_blobs # To create random X and y data

X, y = make_blobs(n_samples=100, n_features=2, centers=3, random_state=0)



criterion = best_criterion_norm(X, y)

print(criterion)



clf = DecisionTreeClassifier(criterion=criterion)

# your script

Choosing the best max_depth value

from bestree import best_depth

from sklearn.tree import DecisionTreeClassifier



from sklearn.datasets import make_blobs # To create random X and y data

X, y = make_blobs(n_samples=100, n_features=2, centers=3, random_state=0)



max_depth = best_depth(X, y, criterion="gini")



clf = DecisionTreeClassifier(max_depth=max_depth)

# your script

Choosing the best splitter

from bestree import best_splitter

from sklearn.tree import DecisionTreeClassifier



from sklearn.datasets import make_blobs # To create random X and y data

X, y = make_blobs(n_samples=100, n_features=2, centers=3, random_state=0)



max_depths = 3

criterion = "gini"



split = best_splitter(X, y, max_depths, criterion=criterion)



clf = DecisionTreeClassifier(min_samples_split=split)

# your script

Choosing the best state

from bestree import best_state

from sklearn.tree import DecisionTreeClassifier



from sklearn.datasets import make_blobs # To create random X and y data

X, y = make_blobs(n_samples=100, n_features=2, centers=3, random_state=0)



max_depths = 3

criterion = "gini"



state = best_state(X, y, max_depths, criterion=criterion)



clf = DecisionTreeClassifier(random_state=state)

# your script

Help & Support

Communication:

Conclusion

Thanks for everybody that supported me (nobody)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bestree-0.1.0.tar.gz (3.9 kB view hashes)

Uploaded Source

Built Distribution

bestree-0.1.0-py3-none-any.whl (4.0 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page