Beta calibration
Project description
Beta calibration - Python package
This package provides a BetaCalibration class which allows the user to fit any of our three proposed beta calibration models. For the paper and tutorials, check https://betacal.github.io/.
Dependencies
- Numpy - NumPy is the fundamental package for scientific computing with Python.
- Scikit-learn - Machine Learning in Python.
Usage
- Install from pip using "pip install betacal"
- Alternatively, download from the repository, cd to the folder and use "pip install ."
- Once installed, import the package using "import betacal"
Unittest
Create a virtual environment with the necessary dependencies
virtualenv venv
. ./venv/bin/activate
pip install -r requirements.txt
and then run the script runtests.sh
bash runtests.sh
License
MIT
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
betacal-1.1.0.tar.gz
(3.7 kB
view details)
Built Distribution
File details
Details for the file betacal-1.1.0.tar.gz
.
File metadata
- Download URL: betacal-1.1.0.tar.gz
- Upload date:
- Size: 3.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fc425a0bf78a3b368d60d8b1e465ee4bc953c52440e04836eb5098a1b32d98cc |
|
MD5 | f6004364e034b028b0603e003571f1d9 |
|
BLAKE2b-256 | f676edaa7f9688a8a1458063ec2495ef552d99a9186b01bbbd752e61391d8f8d |
File details
Details for the file betacal-1.1.0-py3-none-any.whl
.
File metadata
- Download URL: betacal-1.1.0-py3-none-any.whl
- Upload date:
- Size: 5.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b7063c65fb7eb1b8d5bba4498f1f91aceb727e1ed0758e3bfc4b4b455715d023 |
|
MD5 | 16f0868141a5e36fb9d46cc46a7d6a2d |
|
BLAKE2b-256 | 42414c21097cbf63a8081ab637f1ce064238ad3de9dd000ecd783e2fc81e90e3 |