Skip to main content

Geomagnetic field (B), Geoelectric field (E), and Magnetotelluric Impedance (Z) Python routines.

Project description

Bezpy

DOI

Bezpy is an open source library for analysis of geomagnetic (B), geoelectric (E), and magnetotelluric impedance (Z) data within a geophysical framework. This library contains routines for calculating the geoelectric field from the geomagnetic field in multiple different ways.

Features

  • Geomagnetic to geoelectric field calculations
  • Integration of the geoelectric field along transmission lines
  • Built using established, fast, open source python libraries Pandas, NumPy, SciPy

Examples

Example notebooks can be found in notebooks/

Example scripts for command line use can be found in scripts/

Install

The easiest method to install bezpy is directly from PyPI using pip.

pip install bezpy

If you want a local install to modify anything in the code, you can clone the git repository and install locally with these commands.

git clone https://github.com/greglucas/bezpy
cd bezpy
pip install .

License

The code is released under the MIT license License described in LICENSE.md

References

This package has been developed from different publications. Please consider citing the papers that are relevant to the work you are doing if you are utilizing this code. The culmination of much of the work was contained in our paper "A 100-year geoelectric hazard analysis for the U.S. high-voltage power grid."

doi:10.1029/2019SW002329

Lucas, G., Love, J. J., Kelbert, A., Bedrosian, P. A., & Rigler, E. J. (2020).
A 100-year geoelectric hazard analysis for the U.S. high-voltage power grid.
Space Weather, 18, e2019SW002329.
https://doi.org/10.1029/2019SW002329

Geoelectric field calculations

doi:10.1002/2017GL076042

Love, J. J., Lucas, G. M., Kelbert, A., & Bedrosian, P. A. (2018).
Geoelectric hazard maps for the Mid‐Atlantic United States:
100 year extreme values and the 1989 magnetic storm.
Geophysical Research Letters, 44, doi:10.1002/2017GL076042.

Transmission line integrations

doi:10.1002/2017SW001779

Lucas, G. M., Love, J. J., & Kelbert, A. (2018). Calculation of voltages
in electric power transmission lines during historic geomagnetic storms:
An investigation using realistic earth impedances. Space Weather, 16,
181–195, doi:10.1002/2017SW001779.

Time domain (DTIR)

doi:10.1002/2017SW001594

Kelbert, A., C. C. Balch, A. Pulkkinen, G. D. Egbert,
J. J. Love, E. J. Rigler, and I. Fujii (2017),
Methodology for time-domain estimation of storm time geoelectric fields
using the 3-D magnetotelluric response tensors,
Space Weather, 15, 874–894, doi:10.1002/2017SW001594.

Earthscope impedance database

doi:10.17611/DP/EMTF.1

Kelbert, A., G.D. Egbert and A. Schultz (2011),
IRIS DMC Data Services Products: EMTF, The Magnetotelluric Transfer Functions,
doi:10.17611/DP/EMTF.1.

Problems/Questions

Additional Links

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bezpy-0.1.1.tar.gz (1.1 MB view details)

Uploaded Source

Built Distribution

bezpy-0.1.1-py3-none-any.whl (69.1 kB view details)

Uploaded Python 3

File details

Details for the file bezpy-0.1.1.tar.gz.

File metadata

  • Download URL: bezpy-0.1.1.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.2

File hashes

Hashes for bezpy-0.1.1.tar.gz
Algorithm Hash digest
SHA256 16a835155a9a8b7a72c4083efe71f93dd3bd39862efb0be820370624e5f038fb
MD5 78051a6a57af8d23db2458faf3bd5904
BLAKE2b-256 cc8bf5df79d0ec3f826740f63cd6593ede4ad907f40db44e5750a23827066b66

See more details on using hashes here.

File details

Details for the file bezpy-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: bezpy-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 69.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.2

File hashes

Hashes for bezpy-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 04e70ddc34bc1f6f402280858283c3b53a7583a83f85cf72508a2ae16f4d79c8
MD5 e00e56681bead93a9510184346a333fd
BLAKE2b-256 01cbb2fc5da329ce968a974a508cdf9d7397567e6b6188b88163c91728b50375

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page