Skip to main content

Package for loading data from bgen files

Project description

Another bgen parser

bgen

This is a package for reading and writing bgen files.

This package uses cython to wrap c++ code for parsing bgen files. It's fairly quick, it can parse genotypes from 500,000 individuals at ~300 variants per second within a single python process (~450 million probabilities per second with a 3GHz CPU). Decompressing the genotype probabilities can be the slow step, zlib decompression takes 80% of the total time, using zstd compressed genotypes is ~2X faster.

This has been optimized for UKBiobank bgen files (i.e. bgen version 1.2 with zlib compressed 8-bit genotype probabilities, but the other bgen versions and zstd compression have also been tested using example bgen files).

Install

pip install bgen

Usage

from bgen import BgenReader, BgenWriter

bfile = BgenReader(BGEN_PATH)
rsids = bfile.rsids()

# select a variant by indexing
var = bfile[1000]

# pull out genotype probabilities
probs = var.probabilities  # returns 2D numpy array
dosage = var.minor_allele_dosage  # returns 1D numpy array for biallelic variant

# iterate through every variant in the file
with BgenReader(BGEN_PATH, delay_parsing=True) as bfile:
  for var in bfile:
      dosage = var.minor_allele_dosage

# get all variants in a genomic region
variants = bfile.fetch('21', 10000, 5000000)

# or for writing bgen files
import numpy as np
from bgen import BgenWriter

geno = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).astype(np.float64)
with BgenWriter(BGEN_PATH, n_samples=3) as bfile:
  bfile.add_variant(varid='var1', rsid='rs1', chrom='chr1', pos=1,
                    alleles=['A', 'G'], genotypes=geno)

API documentation

class BgenReader(path, sample_path='', delay_parsing=False)
    # opens a bgen file. If a bgenix index exists for the file, the index file
    # will be opened automatically for quicker access of specific variants.
    Arguments:
      path: path to bgen file
      sample_path: optional path to sample file. Samples will be given integer IDs
          if sample file is not given and sample IDs not found in the bgen file
      delay_parsing: True/False option to allow for not loading all variants into
          memory when the BgenFile is opened. This can save time when iterating
          across variants in the file
  
  Attributes:
    samples: list of sample IDs
    header: BgenHeader with info about the bgen version and compression.
  
  Methods:
    slicing: BgenVars can be accessed by slicing the BgenFile e.g. bfile[1000]
    iteration: variants in a BgenFile can be looped over e.g. for x in bfile: print(x)
    fetch(chrom, start=None, stop=None): get all variants within a genomic region
    drop_variants(list[int]): drops variants by index from being used in analyses
    with_rsid(rsid): returns list of BgenVars with given rsid
    at_position(pos): returns list of BgenVars at a given position
    varids(): returns list of varids for variants in the bgen file.
    rsids(): returns list of rsids for variants in the bgen file.
    chroms(): returns list of chromosomes for variants in the bgen file.
    positions(): returns list of positions for variants in the bgen file.

class BgenVar(handle, offset, layout, compression, n_samples):
  # Note: this isn't called directly, but instead returned from BgenFile methods
  Attributes:
    varid: ID for variant
    rsid: reference SNP ID for variant
    chrom: chromosome variant is on
    pos: nucleotide position variant is at
    alleles: list of alleles for variant
    is_phased: True/False for whether variant has phased genotype data
    ploidy: list of ploidy for each sample. Samples are ordered as per BgenFile.samples
    minor_allele: the least common allele (for biallelic variants)
    minor_allele_dosage: 1D numpy array of minor allele dosages for each sample
    alt_dosage: 1D numpy array of alt allele dosages for each sample
    probabilities:  2D numpy array of genotype probabilities, one sample per row
      These are most likely for biallelic diploid variants. In that scenario
      unphased probabilities have three columns, for homozygous first allele 
      (AA), heterozygous (Aa), homozygous second allele (aa).
      In contrast, phased probabilities (for a biallelic diploid variant) would
      have four columns, first two for haplotype 1 (hap1-allele1, hap1-allele2), 
      last two for haplotype 2 (hap2-allele1, hap2-allele2).
  
  BgenVars can be pickled e.g. pickle.dumps(var)


class BgenWriter(path, n_samples, samples=[], compression='zstd' layout=2, metadata=None)
    # opens a bgen file to write variants to. Automatically makes a bgenix index file
    Arguments:
      path: path to write data to
      n_samples: number of samples that you have data for
      samples: list of sample IDs (same length as n_samples)
      compression: compression type: None, 'zstd', or 'zlib' (default='zstd')
      layout: bgen layout format (default=2)
      metadata: any additional metadata you want o include in the file (as str)
    
    Methods:
      add_variant_direct(variant)
        Arguments:
            variant: BgenVar, to be directly copied from one begn file to 
                another. This can be done when the new bgen file is for the same
                set of samples as the one being read from. This is much faster
                due to not having to decode and re-encode the genotype data.
      add_variant(varid, rsid, chrom, pos, alleles, genotypes, ploidy=2, 
                  phased=False, bit_depth=8)
        Arguments:
            varid: variant ID e.g. 'var1'
            rsid: reference SNP ID e.g. 'rs1'
            chrom: chromosome the variant is on e.g 'chr1'
            pos: nucleotide position of the variant e.g. 100
            alleles: list of allele strings e.g. ['A', 'C']
            genotypes: numpy array of genotype probabilities, ordered as per the
                bgen samples e.g. np.array([[0, 0, 1], [0.5, 0.5, 0]])
            ploidy: ploidy state, either as integer to indicate constant ploidy
                (e.g. 2), or numpy array of ploidy values per sample, e.g. np.array([1, 2, 2])
            phased: whether the genotypes are for phased data or not (default=False)
            bit_depth: how many bits to store each genotype as (1-32, default=8)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bgen-1.7.2.tar.gz (901.8 kB view details)

Uploaded Source

Built Distributions

bgen-1.7.2-cp312-cp312-win_amd64.whl (496.4 kB view details)

Uploaded CPython 3.12 Windows x86-64

bgen-1.7.2-cp312-cp312-win32.whl (445.5 kB view details)

Uploaded CPython 3.12 Windows x86

bgen-1.7.2-cp312-cp312-musllinux_1_1_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

bgen-1.7.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

bgen-1.7.2-cp312-cp312-macosx_11_0_arm64.whl (870.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

bgen-1.7.2-cp311-cp311-win_amd64.whl (496.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

bgen-1.7.2-cp311-cp311-win32.whl (444.5 kB view details)

Uploaded CPython 3.11 Windows x86

bgen-1.7.2-cp311-cp311-musllinux_1_1_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

bgen-1.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

bgen-1.7.2-cp311-cp311-macosx_11_0_arm64.whl (869.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

bgen-1.7.2-cp310-cp310-win_amd64.whl (496.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

bgen-1.7.2-cp310-cp310-win32.whl (445.5 kB view details)

Uploaded CPython 3.10 Windows x86

bgen-1.7.2-cp310-cp310-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

bgen-1.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

bgen-1.7.2-cp310-cp310-macosx_11_0_arm64.whl (869.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

bgen-1.7.2-cp39-cp39-win_amd64.whl (497.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

bgen-1.7.2-cp39-cp39-win32.whl (446.1 kB view details)

Uploaded CPython 3.9 Windows x86

bgen-1.7.2-cp39-cp39-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

bgen-1.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

bgen-1.7.2-cp39-cp39-macosx_11_0_arm64.whl (870.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

bgen-1.7.2-cp38-cp38-win_amd64.whl (497.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

bgen-1.7.2-cp38-cp38-win32.whl (446.2 kB view details)

Uploaded CPython 3.8 Windows x86

bgen-1.7.2-cp38-cp38-musllinux_1_1_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

bgen-1.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

bgen-1.7.2-cp38-cp38-macosx_11_0_arm64.whl (869.7 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

File details

Details for the file bgen-1.7.2.tar.gz.

File metadata

  • Download URL: bgen-1.7.2.tar.gz
  • Upload date:
  • Size: 901.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for bgen-1.7.2.tar.gz
Algorithm Hash digest
SHA256 51e55e31a77e8bb3e4818928cd4de67e3e81785bfa1cef6aa18bbf4f29f0f0a4
MD5 027a3b7ff8757b56a7b11b17433ad37f
BLAKE2b-256 cf512a4a89f02b4a5dc058a4886429a464de367825f2ac2d06426708fc38beb9

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: bgen-1.7.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 496.4 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for bgen-1.7.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 4d5564b31e3ce3f46d73b6b819b435b56e16c5663c7b8fb7698243200b283da3
MD5 796bec7a3d354add810d1cd1d2764dfd
BLAKE2b-256 539f18a5775ae9d4416fa16e264fa6620e8c285a4c4381ee4ddbc63bd5c4a965

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: bgen-1.7.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 445.5 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for bgen-1.7.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 d14123dde73cde3798b0de6b3b5feea633ea3ca614fa0a8499f664fbdff8c8ff
MD5 cf2927ecae7c622aea85e32994319afd
BLAKE2b-256 4ac611dd289481a047d2a3ee736d9ae6c034f004bdb05855f1eb59adc4463a84

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.7.2-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7ea7886638453862cf0e6d72805ad538949e9d426664af961089e6c569cb93b8
MD5 515ee55f87b2861c4521998a7c21d431
BLAKE2b-256 cc5e9349b4203b6c5860d88ce3b9abeb03514de9da26b2be7c95d1da9869023f

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.7.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dda23bb17378158e922954b2fe3dc37c0f049261a7f108020fcb28f8bd33655e
MD5 bef9fcab42e33ffcc3b3fe9ac3b1bbd8
BLAKE2b-256 ba4b679b3a163fb19fee8ca15f6099d9a3152eee7f863991229d290a5d345fca

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bgen-1.7.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f71552e20908e930c7075966c794d7e825e98efa8bc19232214a7e0b8679b193
MD5 9241b748e40b7a63e3e9a2efdbed8e57
BLAKE2b-256 988d896f3c4389463f9c640b2693149b62f7c38aee4eb0a45f894e4b7cb30ae0

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: bgen-1.7.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 496.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for bgen-1.7.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 be117a64b90a057f80a8aec519c6a20f2f1f1f70fcef5200a16b08fc1b07a20c
MD5 9fe5431cfa50f0a7b7ebddabcdb68f2c
BLAKE2b-256 1aa9cc6c215c2adf9857d256e1699ccd060b884589d1472e1248f12a9269fe9b

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: bgen-1.7.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 444.5 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for bgen-1.7.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 98f563c05bffee386833a00c9d351b7fccfca2710dd020459e4e02e515d14f7c
MD5 55efea05e8a7f430bed31a0cd328bb45
BLAKE2b-256 740b3becceb073fbfdd503430b0ee5f85b9632daa982d9d22058ab6578fc37d5

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.7.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 dd2bb06e5366c85bb741f2f04c1a7b6a0932a8e4a8e919c093c13c2fdcba1570
MD5 a5412e87e6d1b34bbf0808a1f4729d3c
BLAKE2b-256 7987ec5b0c89fdc7c82db54099c5fb148289ff5849aa53fd72da1c7b939b25b1

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3200109e136920ac804e5afdb59a536697d6d933fdb9efea9ae50f87a4de1b17
MD5 5fa6b3b6d89fcfa85765325cd476dba3
BLAKE2b-256 e332ec8550b2cdb57e1cd465193a18e75c6028ba550e7e089f61473ad7fe2e02

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bgen-1.7.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1c97f8c950d13b6952275d1b30100ccc0f5921cbb18cf526c2a69207c0be7249
MD5 6efec6e702398f2d7e5550e42927d54b
BLAKE2b-256 af2891590f09def646c150adc34cf3f679c39958288b2ee00341d4f076578991

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: bgen-1.7.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 496.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for bgen-1.7.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1d6a0ae64b2451ace530d2a470ca3e811f05b4d5ba6637d72a01f6e5a69b8d9b
MD5 5d40595b11ac06e14d7db153d0d850eb
BLAKE2b-256 d31fef44d06b2a75af297901bfb77d05dfc711474800f3a3bf35723d6653b096

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: bgen-1.7.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 445.5 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for bgen-1.7.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 6adbb68ea0b47ea26088dc7530ad316642be8420f694df849ef74d90b5073d5c
MD5 7f241d07ff2a9bd6dde6523dd53888d5
BLAKE2b-256 231ed7721f5f9f73364ff6d057c2ea86ddd37c75c8c9f467bcc2a88cd622e4eb

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.7.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5e632680ff6e7a73eccf144749fbe94b23dec92b4fc08c2f3a6960608e8b035a
MD5 12cca20a2452e4fa692d1bf1d60618cf
BLAKE2b-256 b426b8bcef6847660f283f24fe3027a2ba58b8b01e16e93a2d5131e9377e817e

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cf1ab83a372e3e49968886b7c55582e377caa3cf5bda246b55e1f9288791e46f
MD5 726df2f16567e2b07ef4e1e9a53a201b
BLAKE2b-256 4cb7aa4a0933aa4c3c95b9046e721c0e13500fd2de1dd044f3aee8053ea146e3

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bgen-1.7.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 522cd0200380dc82455c243f4ba95adb54bdcd7041681e5a586bb36e7e04c923
MD5 7938f5f430404d48d34a59c2810da46b
BLAKE2b-256 cd164728e15e04908d79d154cc4d47e946c102200285b123de276520da4cfc6e

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: bgen-1.7.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 497.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for bgen-1.7.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6825291f5dd52b3072d860730455a7b36bb0ce2763eed30e193e58a81c1e048e
MD5 d97c191e3603f5045cc9e99fa135b8fb
BLAKE2b-256 e2a0f133334a2a08fc81ce410c1b40763c32ffde15c0dd0cc2dc837237373933

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: bgen-1.7.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 446.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for bgen-1.7.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0c92adf9099fd5bd823e4b6f807b2dfd39b1c63ff9c3dd40b9d3cd4bb62be6e8
MD5 c6133366c96274304df29fbf277d369f
BLAKE2b-256 a84fc5b50dd757724951d54fb300dab279f1400276abf42fe16e0421bd7a765f

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.7.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 61346e77ba7baf3b00c1e2ac5d5f13556ab3f3c4bdcef4efaa89cb6164a7d971
MD5 62608e430744d4b3bd777580d9436f44
BLAKE2b-256 7d5b36a435ba862c4fdade0373ffc1862ff58c914c62ac449056ad8d46933046

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 25140b080fe6da3cd81337e125b1be3701ea9248d58287f88c4527162e640c44
MD5 05e96cd0d2a23c556d1289108deeb312
BLAKE2b-256 28922cdd2d25e55a205ec8b25f6ed9146a950ad92a2e8e17d114ad381affd37f

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bgen-1.7.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0f80d32d7dfc5923c4d2669c4757dc6ee0b461daf7615f23cb578b574978dd69
MD5 5b6b481ef94da2e3965fdb050763a287
BLAKE2b-256 984c3ccc71c5335fce5e34cb7bddc59918b848781a724fac7404b12a0b903e16

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: bgen-1.7.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 497.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for bgen-1.7.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 893d114928de6984ecdb30ae697ff8dee5a7fb322cc0b64edd97c0084f63c6ff
MD5 3c3d89d4aaecdc9e8c89f1ae30daec59
BLAKE2b-256 49c882144dfd63cab7966cc79c030a07cce6d7f2a34ce50355560803b4b2e47e

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: bgen-1.7.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 446.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for bgen-1.7.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 186468f5fa9d376b54494fe5e215539f73884cd390cce605e58200f0743ec0cb
MD5 d1d5cf70c9fd78d7a10407a37c7029f9
BLAKE2b-256 1474d19282d895b04e82cbf066834373f50c9e31adb761182b2d8cc27019f1c1

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.7.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7369aaa4ffe8f9679d1a90c9b371f355b402541ebe0e5103171af09daed303dc
MD5 bb938090483b0b949fc466ce1bf3f3f9
BLAKE2b-256 092e3c18dfaf7c8792a5addd6465aa98019db36f20216921b79b486b037305bf

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a59098fe78bdd531214a49c6b10fd8a07801a44ba5f16ba75f43b6561a3d0968
MD5 009a756293fcc553d4994bf5508e01f9
BLAKE2b-256 86e9e062b659aa07030cc0bcb0357ba6f89a2e5039b7365d099990467db4504b

See more details on using hashes here.

File details

Details for the file bgen-1.7.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bgen-1.7.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f960247d7172c8dbef06bb27db361056b0e05ec2f2ecb80009d054accb2e6716
MD5 ed919c01e355a01a82689ec2a6e818e8
BLAKE2b-256 6045bebba765d61629629d7362250e2eaf3d3f1df65c3c474cd76bb5f5553da6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page