A tool package for Bgolearn
Project description
__description__ = ‘BgoKit, A tool package for Bgolearn’ __documents__ = ‘https://bgolearn.netlify.app/’ __author__ = ‘Bin Cao, Advanced Materials Thrust, Hong Kong University of Science and Technology (Guangzhou)’ __author_email__ = ‘binjacobcao@gmail.com’ __url__ = ‘https://github.com/Bin-Cao/Bgolearn’
# 安装后, 通过此命令调用BGOsampling类 import Bgolearn.BGOsampling as BGOS import pandas as pd
# 读入我们使用的数据 data = pd.read_csv(‘./data/data.csv’) vs = pd.read_csv(‘./data/Visual_samples.csv’)
# 在此研究中,变量是元素含量 : Sn, Bi, In, Ti, 也就是前四列 x = data.iloc[:,:-2] # 这行代码读取前四列,是特征
y_T = data.iloc[:,-2] # 这行代码读取倒数第二列,是目标, 抗拉强度 T y_E = data.iloc[:,-1] # 这行代码读取倒数第一列,是目标, 断裂延伸率 E
# 执行Bgolearn Bgolearn = BGOS.Bgolearn()
Mymodel_T = Bgolearn.fit(data_matrix = x, Measured_response = y_T, virtual_samples = vs, min_search=False) score_T, rec_T = Mymodel_T.UCB()
Mymodel_E = Bgolearn.fit(data_matrix = x, Measured_response = y_E, virtual_samples = vs, min_search=False) score_E, rec_E = Mymodel_E.UCB()
# 执行BgoKit from BgoKit import ToolKit
Model = ToolKit.MultiOpt(vs,[score_T,score_E]) Model.BiSearch() Model.plot_distribution()
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file BgoKit-0.0.4.tar.gz
.
File metadata
- Download URL: BgoKit-0.0.4.tar.gz
- Upload date:
- Size: 4.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4dde193162dbb88aa72af0e79452f73e47b7e4c585eb832056bdc82e8d0df33c |
|
MD5 | fe08ff2095cbbf679b9504bcefaf7b49 |
|
BLAKE2b-256 | b2b855b623a86655d4cc897998fda6ca67cf8b068642804b29d04e1271b78ac0 |
File details
Details for the file BgoKit-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: BgoKit-0.0.4-py3-none-any.whl
- Upload date:
- Size: 5.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1463f7aac87c29051dd8dd834259ab0c920e84a07f08e6f9dfbd55e45ea4aaa3 |
|
MD5 | e6afb1a92562065308219ba337ab4e09 |
|
BLAKE2b-256 | 4fcad6e6e9d2c6409d41c70a87968a9829f3512b0cd3c08291c92e41f46a09f9 |