Skip to main content

A Bayesian global optimization package for material design

Project description

[![](https://img.shields.io/badge/PyPI-caobin-blue)](https://pypi.org/project/Bgolearn/) # Python package - Bgolearn

![Screen Shot 2022-07-11 at 9 13 28 AM](https://user-images.githubusercontent.com/86995074/178176016-8a79db81-fcfb-4af0-9b1c-aa4e6a113b5e.png)

## 为材料设计而生! ## ( A Bayesian global optimization package for material design )Version 1, Jul, 2022

Reference paper : V. Picheny, T. Wagner, and D. Ginsbourger. “A Benchmark of Kriging-Based Infill Criteria for Noisy Optimization”. In: Structural and Multidisciplinary Optimization 48.3 (Sept. 2013), pp. 607–626. issn: 1615-1488.

Written using Python, which is suitable for operating systems, e.g., Windows/Linux/MAC OS etc.

## Content Bgolearn guides subsequent material design based on existed experimental data. Which includes: 1.Expected Improvement algorithm, 2.Expected improvement with “plugin”,3.Augmented Expected Improvement,4.Expected Quantile Improvement,5.Reinterpolation Expected Improvement, 6.Upper confidence bound,7.Probability of Improvement,8.Predictive Entropy Search,9.Knowledge Gradient, a total of nine Utility Functions. Predictive Entropy Search,Knowledge Gradient are implemented based on Monte Carlo simulation.(贝叶斯优化设计,根据已有的实验数据对后续材料设计作出指导,本算法包共包括:期望最大化算法,期望最大化算法改进(考虑数据噪声),上确界方法,期望提升方法,熵搜索,知识梯度方法等在内的共计9种贝叶斯采样方法。其中熵搜索和知识梯度方法基于蒙特卡洛实现)

## Installing / 安装 pip install Bgolearn

## Updating / 更新 pip install –upgrade Bgolearn

## About / 更多 Maintained by Bin Cao. Please feel free to open issues in the Github or contact Bin Cao (bcao@shu.edu.cn) in case of any problems/comments/suggestions in using the code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Bgolearn-2.3.1.tar.gz (17.6 kB view details)

Uploaded Source

Built Distribution

Bgolearn-2.3.1-py3-none-any.whl (22.7 kB view details)

Uploaded Python 3

File details

Details for the file Bgolearn-2.3.1.tar.gz.

File metadata

  • Download URL: Bgolearn-2.3.1.tar.gz
  • Upload date:
  • Size: 17.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for Bgolearn-2.3.1.tar.gz
Algorithm Hash digest
SHA256 9ef4612fc5dbe413107e0e75537e5c43e97c3206d06c015f46ce612820d6eb68
MD5 64cf26987c4cad3a1107ce340f6c233d
BLAKE2b-256 f422b04028fab1e5586bcb9d6008e3674468b1b47730c9c2b2bda48107a1d065

See more details on using hashes here.

File details

Details for the file Bgolearn-2.3.1-py3-none-any.whl.

File metadata

  • Download URL: Bgolearn-2.3.1-py3-none-any.whl
  • Upload date:
  • Size: 22.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for Bgolearn-2.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9f21d570a2bcccef3d30a5b79f75464bb14e8b1cda0c8ddcc3bb6005fe019320
MD5 b68bdc8c45a8273db0f9b6225cf3f364
BLAKE2b-256 b197df8b231f52a80e906cbb7a8299c53541a9ffbbc5dc93ddc62b7e9a5a4ae2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page