Official Python wrapper for BGSLibrary
Project description
BGSLibrary: A Background Subtraction Library
Introduction
The BGSLibrary (Background Subtraction Library) is a comprehensive C++ framework designed for background subtraction in computer vision applications, particularly for detecting moving objects in video streams. It provides an easy-to-use and extensible platform for researchers and developers to experiment with and implement various background subtraction techniques.
Library Version
3.3.0 (see Build Status and Release Notes for more info)
Background and Development
The BGSLibrary was developed in early 2012 by Andrews Cordolino Sobral as a C++ framework with wrappers available for Python, Java, and MATLAB. It aims to facilitate foreground-background separation in videos using the OpenCV library.
Compatibility
The library is compatible with OpenCV versions 2.4.x, 3.x, and 4.x. It can be compiled and used on Windows, Linux, and Mac OS X systems.
Licensing
The library's source code is available under the MIT license, making it free for both academic and commercial use.
Getting started
- List of available algorithms
- Algorithms benchmark
- Which algorithms really matter?
- Library architecture
#include <iostream>
#include <algorithm>
#include <iterator>
#include <vector>
// Include the OpenCV and BGSLibrary libraries
#include <opencv2/opencv.hpp>
#include <bgslibrary/algorithms/algorithms.h>
int main( int argc, char** argv )
{
// Gets the names of the background subtraction algorithms registered in the BGSLibrary factory
auto algorithmsName = BGS_Factory::Instance()->GetRegisteredAlgorithmsName();
// Displays the number of available background subtraction algorithms in the BGSLibrary
std::cout << "Number of available algorithms: " << algorithmsName.size() << std::endl;
// Displays the list of available background subtraction algorithms in the BGSLibrary
std::cout << "List of available algorithms:" << std::endl;
std::copy(algorithmsName.begin(), algorithmsName.end(), std::ostream_iterator<std::string>(std::cout, "\n"));
// Returns 0 to indicate that the execution was successful
return 0;
}
Installation instructions
You can either install BGSLibrary via pre-built binary package or build it from source
Supported Compilers:
- GCC 4.8 and above
- Clang 3.4 and above
- MSVC 2015, 2017, 2019 or newer
Other compilers might work, but are not officially supported. The bgslibrary requires some features from the ISO C++ 2014 standard.
Graphical User Interface
Wrappers
Usage examples
- BGSlibrary examples folder
- BGSlibrary examples in C++
- BGSlibrary examples in Python
More
- Docker images
- How to integrate BGSLibrary in your own CPP code
- How to contribute
- List of collaborators
- Release notes
Algorithm compatibility across OpenCV versions
Algorithm | OpenCV < 3.0 (42) | 3.0 <= OpenCV <= 3.4.7 (41) | 3.4.7 < OpenCV < 4.0 (39) | OpenCV >= 4.0 (26) |
---|---|---|---|---|
AdaptiveBackgroundLearning | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
AdaptiveSelectiveBackgroundLearning | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
CodeBook | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
DPAdaptiveMedian | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
DPEigenbackground | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
DPGrimsonGMM | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
DPMean | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
DPPratiMediod | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
DPTexture | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
DPWrenGA | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
DPZivkovicAGMM | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
FrameDifference | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
FuzzyChoquetIntegral | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
FuzzySugenoIntegral | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
GMG | :heavy_check_mark: | :x: | :x: | :x: |
IndependentMultimodal | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
KDE | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
KNN | :x: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
LBAdaptiveSOM | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
LBFuzzyAdaptiveSOM | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
LBFuzzyGaussian | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
LBMixtureOfGaussians | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
LBP_MRF | :heavy_check_mark: | :heavy_check_mark: | :x: | :x: |
LBSimpleGaussian | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
LOBSTER | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
MixtureOfGaussianV1 | :heavy_check_mark: | :x: | :x: | :x: |
MixtureOfGaussianV2 | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
MultiCue | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
MultiLayer | :heavy_check_mark: | :heavy_check_mark: | :x: | :x: |
PAWCS | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
PixelBasedAdaptiveSegmenter | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
SigmaDelta | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
StaticFrameDifference | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
SuBSENSE | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
T2FGMM_UM | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
T2FGMM_UV | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
T2FMRF_UM | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
T2FMRF_UV | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
TwoPoints | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
ViBe | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
VuMeter | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
WeightedMovingMean | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
WeightedMovingVariance | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
Stargazers over time
Citation
If you use this library for your publications, please cite it as:
@inproceedings{bgslibrary,
author = {Sobral, Andrews},
title = {{BGSLibrary}: An OpenCV C++ Background Subtraction Library},
booktitle = {IX Workshop de Visão Computacional (WVC'2013)},
address = {Rio de Janeiro, Brazil},
year = {2013},
month = {Jun},
url = {https://github.com/andrewssobral/bgslibrary}
}
A chapter about the BGSLibrary has been published in the handbook on Background Modeling and Foreground Detection for Video Surveillance.
@incollection{bgslibrarychapter,
author = {Sobral, Andrews and Bouwmans, Thierry},
title = {BGS Library: A Library Framework for Algorithm’s Evaluation in Foreground/Background Segmentation},
booktitle = {Background Modeling and Foreground Detection for Video Surveillance},
publisher = {CRC Press, Taylor and Francis Group.}
year = {2014},
}
References
-
Sobral, Andrews. BGSLibrary: An OpenCV C++ Background Subtraction Library. IX Workshop de Visão Computacional (WVC'2013), Rio de Janeiro, Brazil, Jun. 2013. (PDF in brazilian-portuguese containing an english abstract).
-
Sobral, Andrews; Bouwmans, Thierry. "BGS Library: A Library Framework for Algorithm’s Evaluation in Foreground/Background Segmentation". Chapter on the handbook "Background Modeling and Foreground Detection for Video Surveillance", CRC Press, Taylor and Francis Group, 2014. (PDF in english).
Some algorithms of the BGSLibrary were used successfully in the following papers:
-
(2014) Sobral, Andrews; Vacavant, Antoine. A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Computer Vision and Image Understanding (CVIU), 2014. (Online) (PDF)
-
(2013) Sobral, Andrews; Oliveira, Luciano; Schnitman, Leizer; Souza, Felippe. (Best Paper Award) Highway Traffic Congestion Classification Using Holistic Properties. In International Conference on Signal Processing, Pattern Recognition and Applications (SPPRA'2013), Innsbruck, Austria, Feb 2013. (Online) (PDF)
Videos
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file bgslibrary-3.3.0.post2.tar.gz
.
File metadata
- Download URL: bgslibrary-3.3.0.post2.tar.gz
- Upload date:
- Size: 1.2 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9c26671b46dc41493a7139024dc37f21f97155dafcbd10f9a863bf356a8f0745 |
|
MD5 | 763c38bf63dac53a84c2907e50a8dfa5 |
|
BLAKE2b-256 | 5822ac54686f74cd578689b3ab3c6a2723765a67ea95bac39375130d6274fd91 |