An easy-to-use vector database.
Project description
Powered by Dipamkara
Bhakti is
-
A light-weight vector database
-
Easy to use
-
Thread safe
-
Portable
-
Reliable
-
Suitable for small-sized datasets
Installation
-
From PYPI
pip install bhakti
-
From Github
Download .whl first then run
pip install ./bhakti-X.X.X-py3-none-any.whl
Quick Start
Before all, make sure you've successfully installed Bhakti :)
-
Run Bhakti Server
-
To begin, create a path for storing data
mkdir -p /path/to/db
-
Start server using shell command
-
Create configuration file (.yaml)
# bhakti.yaml DIMENSION: 1024 DB_PATH: /path/to/db DB_ENGINE: dipamkara # optional, default to dipamkara CACHED: false # optional, default to false HOST: 0.0.0.0 # optional, default to 0.0.0.0 PORT: 23860 # optional, default to 23860 EOF: <eof> # optional, default to <eof> TIMEOUT: 4.0 # optional, default to 4.0 seconds BUFFER_SIZE: 256 # optional, default to 256 bytes VERBOSE: false # optional, default to false
-
Run bhakti in shell
# bash bhakti ./bhakti.yaml
-
-
Start server using Python
# main.py from bhakti import BhaktiServer from bhakti.database import DBEngine if __name__ == '__main__': bhakti_server = BhaktiServer( dimension=1024, # required, only vectors with 1024 dimensions are acceptable db_path='/path/to/db', # required, path where stores data, portable db_engine=DBEngine.DIPAMKARA, # optional, default to dipamkara cached=False, # optional, default to false host='0.0.0.0', # optional, default to 0.0.0.0 port=23860, # optional, default to 23860 eof=b'<eof>', # optional, default to b'<eof>' timeout=4.0, # optional, default to 4.0 seconds buffer_size=256, # optional, default to 256 bytes verbose=False # optional, default to false ) # run server bhakti_server.run()
-
-
Interact With A Bhakti Client
Currently, Python(>=3.10) is supported
# main.py import asyncio import numpy as np from bhakti import BhaktiClient from bhakti.database import Metric from bhakti.database import DBEngine async def main(): client = BhaktiClient( server='127.0.0.1', # optional, default to 127.0.0.1 port=23860, # optional, default to 23860 eof=b'<eof>', # optional, default to b'<eof>' timeout=4.0, # optional, default to 4.0 seconds buffer_size=256, # optional, default to 256 bytes db_engine=DBEngine.DIPAMKARA, # optional, default to dipamkara verbose=False # optional, default to false ) vector = np.random.randn(1024) await client.create(vector=vector, document={'age': 31, 'gender': 'male'}) await client.create_index('age') await client.create_index('gender') results = await client.find_documents_by_vector_indexed( query='age <= 31 && gender != "female"', vector=vector, metric=Metric.EUCLIDEAN_Z_SCORE, top_k=3 ) print(results) if __name__ == '__main__': asyncio.run(main())
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
bhakti-0.2.17.tar.gz
(52.0 kB
view details)
Built Distribution
bhakti-0.2.17-py3-none-any.whl
(45.8 kB
view details)
File details
Details for the file bhakti-0.2.17.tar.gz
.
File metadata
- Download URL: bhakti-0.2.17.tar.gz
- Upload date:
- Size: 52.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a0f94042d676b700caa4da8f7dc1415ea41c8a79a67aac54027cebbca03e66cc |
|
MD5 | b18eb8cc9b7a55832073d43b20b688fc |
|
BLAKE2b-256 | ce5fab6207b8ba9f00d9092fc39830ba98a3c1ef5859eb06fe32ee4266b78c39 |
File details
Details for the file bhakti-0.2.17-py3-none-any.whl
.
File metadata
- Download URL: bhakti-0.2.17-py3-none-any.whl
- Upload date:
- Size: 45.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c793802b8190c8b193d8812402c2c1173f0f5a6f4b4393942c84b54cbb8d2bca |
|
MD5 | b3223d3fc673bb8de0a25215388c1637 |
|
BLAKE2b-256 | dd5b3843ca393bb4b630986e21a5fa9e8f8cc77f91407c20ea7bb44178c45b8b |