Skip to main content

bianary_classification

Project description

this module is used to find out best parameters of desision tree. Markdown Logo

#Bianary_classification

##Aim The module aims to create a library that will help users to build trees that can help classify binary classes easily. But, it is essential to note that this module should be used after the process (cleaning, transformation, and reduction) of the data.

##Advantages 1.)Autopruneing the tree no need to hyperparameter tuneing 2.)very easy to use. 3.) Brier score to evaluate to find out best paraameter as is that it is focused on the positive class, which for imbalanced classification is the minority class. A perfect classifier has a Brier score of 0.0.

##Limitation 1.) Preprocessing must requires. 2.) do not shows good perfformance for high dimentional data ,feature reduction before use this module is adviceable. 3.)little time consumeing.

##code example :

import bianary_decision_parameter
from bianary_decision_parameter import 
from sklearn import preprocessing
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
Load breast_cancer dataset
split it into train and test set
da=load_breast_cancer()
X1=da.data
y1=da.target
scaled_X_1 = preprocessing.scale(X1)
X_train1, X_test1, y_train1, y_test1 = train_test_split(scaled_X_1, y1,test_size=0.3)
p2=bianary_decision_parameter('auto',X_train1,y_train1, X_test1, y_test1,1,1)
p3=bianary_decision_parameter('sqrt',X_train1,y_train1, X_test1, y_test1,1,10) 
p4=bianary_decision_parameter('log2',X_train1,y_train1, X_test1, y_test1,1,10)

p2.parameter()

	accuracy_score  missclassification 	specificity 	Recall 	precision 	depth 	ccp_alpha 	max_features
     0 	        0.912281 	0.087719 	0.912281 	0.83871 	0.912281 	2 	0.004307 	auto

Explanation

p2=bianary_decision_parameter('auto',X_train1,y_train1, X_test1, y_test1,1,1) Feature_selection = 'auto' \n class_weight = 0_class ,1_class

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bianary_decision_parameter-0.2.tar.gz (5.1 kB view details)

Uploaded Source

Built Distribution

bianary_decision_parameter-0.2-py3-none-any.whl (4.3 kB view details)

Uploaded Python 3

File details

Details for the file bianary_decision_parameter-0.2.tar.gz.

File metadata

  • Download URL: bianary_decision_parameter-0.2.tar.gz
  • Upload date:
  • Size: 5.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.6.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for bianary_decision_parameter-0.2.tar.gz
Algorithm Hash digest
SHA256 bd5cac7fa7062fa265f02b155b431732309ba56c48bc78ada8a8f0e85d8ac0e6
MD5 a1abb43d8ac42743c452609b485426dd
BLAKE2b-256 77a507724d39d97b2ef0051ac87fdf88c50b9e1aef105195d8edcfb6358d5787

See more details on using hashes here.

File details

Details for the file bianary_decision_parameter-0.2-py3-none-any.whl.

File metadata

  • Download URL: bianary_decision_parameter-0.2-py3-none-any.whl
  • Upload date:
  • Size: 4.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.6.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for bianary_decision_parameter-0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 3c3ed241d126140d79f22e1313510dab3b749c67fd95c30cb500ca6b3fd87515
MD5 11132b250b192e818177bfe44d82e2ef
BLAKE2b-256 7341cc654b1e79f4787807b42e9798f4c433e00f50f36cddaf742a932335b8a6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page