Skip to main content

Package for bipartite configuration model

Project description

BiCM package

This is a Python package for the computation of the maximum entropy bipartite configuration model (BiCM) and the projection of bipartite networks on one layer. It was developed with Python 3.5.

You can install this package via pip:

pip install bicm

Documentation is available at https://bipartite-configuration-model.readthedocs.io/en/latest/ .

This package is also a module of NEMtropy that you can find at https://github.com/nicoloval/NEMtropy .

For more solvers of maximum entropy configuration models visit https://meh.imtlucca.it/ .

NOTE of the developer: there was an error in the projection threshold, validating less links than it should have. Please re-run your analysis after updating to the last version (>=3.1)

Basic functionalities

To install:

pip install bicm

To import the module:

import bicm

To generate a Graph object and initialize it (with a biadjacency matrix, edgelist or degree sequences):

from bicm import BipartiteGraph
myGraph = BipartiteGraph()
myGraph.set_biadjacency_matrix(my_biadjacency_matrix)
myGraph.set_adjacency_list(my_adjacency_list)
myGraph.set_edgelist(my_edgelist)
myGraph.set_degree_sequences((first_degree_sequence, second_degree_sequence))

Or alternatively, with the respective data structure as input:

from bicm import BipartiteGraph
myGraph = BipartiteGraph(biadjacency=my_biadjacency_matrix, adjacency_list=my_adjacency_list, edgelist=my_edgelist, degree_sequences=((first_degree_sequence, second_degree_sequence)))

To compute the BiCM probability matrix of the graph or the relative fitnesses coefficients as dictionaries containing the nodes names as keys:

my_probability_matrix = myGraph.get_bicm_matrix()
my_x, my_y = myGraph.get_bicm_fitnesses()

This will solve the bicm using recommended settings for the solver. To customize the solver you can alternatively use (in advance) the following method:

myGraph.solve_tool(light_mode=False, method='newton', initial_guess=None, tolerance=1e-8, max_steps=None, verbose=False, linsearch=True, regularise=False, print_error=True, exp=False)

To get the rows or columns projection of the graph:

myGraph.get_rows_projection()
myGraph.get_cols_projection()

Alternatively, to customize the projection:

myGraph.compute_projection(rows=True, alpha=0.05, method='poisson', threads_num=4, progress_bar=True)

Now version 3 is online, and you can use the package with weighted networks as well using the BiWCM models!

See a more detailed walkthrough in tests/bicm_test or tests/biwcm_test notebooks, or check out the API in the documentation.

How to cite

If you use the bicm module, please cite its location on Github https://github.com/mat701/BiCM and the original articles [Vallarano2021], [Saracco2015] and [Saracco2017].

If you use the weighted models BiWCM_c or BiMCM you might consider citing also the paper introducing the solvers of this package [Bruno2023].

References

[Vallarano2021] N. Vallarano, M. Bruno, E. Marchese, G. Trapani, F. Saracco, T. Squartini, G. Cimini, M. Zanon, Fast and scalable likelihood maximization for Exponential Random Graph Models with local constraints, Nature Scientific Reports

[Bruno2023] M. Bruno, D. Mazzilli, A. Patelli, T. Squartini, F. Saracco, Inferring comparative advantage via entropy maximization. Journal of Physics: Complexity, Volume 4, Number 4 (2023)

[Saracco2015] F. Saracco, R. Di Clemente, A. Gabrielli, T. Squartini, Randomizing bipartite networks: the case of the World Trade Web, Scientific Reports 5, 10595 (2015).

[Saracco2017] F. Saracco, M. J. Straka, R. Di Clemente, A. Gabrielli, G. Caldarelli, and T. Squartini, Inferring monopartite projections of bipartite networks: an entropy-based approach, New J. Phys. 19, 053022 (2017)

Author:

Matteo Bruno (BiCM) (a.k.a. mat701)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bicm-3.4.0.tar.gz (32.7 kB view details)

Uploaded Source

Built Distribution

bicm-3.4.0-py3-none-any.whl (32.8 kB view details)

Uploaded Python 3

File details

Details for the file bicm-3.4.0.tar.gz.

File metadata

  • Download URL: bicm-3.4.0.tar.gz
  • Upload date:
  • Size: 32.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.2

File hashes

Hashes for bicm-3.4.0.tar.gz
Algorithm Hash digest
SHA256 507126af17f521e3daaee1943156997240d7787c56ee10284384093d8eb4c13d
MD5 3d47e3b0c33a5e4a90f0898dcb12c4e2
BLAKE2b-256 5821fcfcbe659f8e5046d55cc75ec593af7b0f56cc6a3baf106166a01a068b16

See more details on using hashes here.

File details

Details for the file bicm-3.4.0-py3-none-any.whl.

File metadata

  • Download URL: bicm-3.4.0-py3-none-any.whl
  • Upload date:
  • Size: 32.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.2

File hashes

Hashes for bicm-3.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9ddb0b682efbdd47980ce406e9f93b18eef3684d3b806577fde116a07561bc06
MD5 698d2c5521248cac2a5d599116dfbd37
BLAKE2b-256 32e9a4f591c6b27abe32eafd81dffc81ad0f7676c604cab50c8fadba3725d243

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page