Normality Test for Big Data
Project description
Empirical Normality Test
A normality test based on empirical rule for big data
Installation
pip install big-data-normality
Get started
How to get normality test for dataset with this lib:
# Library import
from big_data_normality.empirical_normality_test import EmpiricalNormalityTest
# Graph output
from big_data_normality.empirical_normality_test import EmpiricalNormalityTestGraph
# This line of code will allow shorter imports
from big_data_normality import EmpiricalNormalityTest
# Graph output
from big_data_normality import EmpiricalNormalityTestGraph
# Instantiate a EmpiricalNormalityTest object
"""Firstly, import the excel file, then run the library
P.S. Excel file must include name of each column. Like that;
name1 name2 name3 name4 ...
73,36 72,64 68,45 66,52 ...
78,97 67,04 60,85 70,96 ...
... ... ... ... ...
"""
import os
import pandas as pd
path = r'C:\data'
os.chdir(path)
df = pd.read_excel("my_dataset.xlsx")
# Test output
print(EmpiricalNormalityTest(df))
# Graph output
print(EmpiricalNormalityTestGraph(df))
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file big-data-normality-0.1.6.tar.gz
.
File metadata
- Download URL: big-data-normality-0.1.6.tar.gz
- Upload date:
- Size: 4.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a00397fb59c7594d8f23f01e4e9388e412afda035572a362d5d5b4018ffb4094 |
|
MD5 | 160c0e47ce0f6a90c5bbf92fc0db6034 |
|
BLAKE2b-256 | a28a9b7d2e719b66395b780a74115f129ae197cae133218615e75b21c44c8f3a |
File details
Details for the file big_data_normality-0.1.6-py3-none-any.whl
.
File metadata
- Download URL: big_data_normality-0.1.6-py3-none-any.whl
- Upload date:
- Size: 5.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 51232251f35bbb2ee3359b5472078d004afc1be572b05dd8472f1a187413803d |
|
MD5 | ecf69e1671cb2da614b0d5ad8f78ea38 |
|
BLAKE2b-256 | 2cf4b8803b0d303f6e3d8437e0e1aef3048c74568b19b778ba46284494bb8e3d |