A calculator to predict big-O of sorting functions
Project description
Table of Contents
Big-O Caculator
A big-O calculator to estimate time complexity of sorting functions.
inspired by : https://github.com/ismaelJimenez/cpp.leastsq
Installation
pip install big-O-calculator
What it does
You can test time complexity, calculate runtime, compare two sorting algorithms
Results may vary.
(n : [10, 100, 1_000, 10_000, 100_000])
Big-O calculator
Methods:
def test(function, array="random", limit=True, prtResult=True):
It will run only specified array test, returns Tuple[str, estimatedTime]
def test_all(function):
It will run all test cases, prints (best, average, worst cases), returns dict
def runtime(function, array="random", size, epoch=1):
It will simply returns execution time to sort length of size of test array, returns Tuple[float, List[Any]]
def compare(function1, function2, array, size, epoch=3):
It will compare two functions on {array} case, returns dict
Methods parameters
def test(**args):
function [Callable]: a function to call.
array [str]: "random", "big", "sorted", "reversed", "partial", "Ksorted", "string", "almost_equal", "equal", "hole".
limit [bool] = True: To break before it takes "forever" to sort an array. (ex. selectionSort)
prtResult [bool] = True: Whether to print result by itself
def test_all(**args):
function [Callable]: a function to call.
def runtime(**args):
function [Callable]: a function to call.
array: "random", "big", "sorted", "partial", "reversed", "Ksorted" ,
"hole", "equal", "almost_equal" or your custom array.
size [int]: How big test array should be.
epoch [int]: How many tests to run and calculte average.
prtResult (bool): Whether to print the result by itself. (default = True)
def compare(**args):
function1 [Callable]: a function to compare.
function2 [Callable]: a function to compare.
array [str]|[List]: "random", "big", "sorted", "partial", "reversed", "Ksorted",
"hole", "equal", "almost_equal", "all" or your custom array.
size [int]: How big test array should be.
Info: To see the result of function, return the array.
These methods will also check if the function sorts correctly.
"K" in Ksorted uses testSize.bit_length().
Usage
from bigO import BigO
from bigO import algorithm
lib = BigO()
lib.test(bubbleSort, "random")
lib.test_all(bubbleSort)
lib.runtime(bubbleSort, "random", 5000)
lib.runtime(algorithm.insertSort, "reversed", 32)
lib.compare(algorithm.insertSort, algorithm.bubbleSort, "all", 5000)
Quick Sort Example
from bigO import BigO
from random import randint
def quickSort(array): # in-place | not-stable
"""
Best : O(nlogn) Time | O(logn) Space
Average : O(nlogn) Time | O(logn) Space
Worst : O(n^2) Time | O(logn) Space
"""
if len(array) <= 1:
return array
smaller, equal, larger = [], [], []
pivot = array[randint(0, len(array) - 1)]
for x in array:
if x < pivot:
smaller.append(x)
elif x == pivot:
equal.append(x)
else:
larger.append(x)
return quickSort(smaller) + equal + quickSort(larger)
lib = BigO()
complexity = lib.test(quickSort, "random")
complexity = lib.test(quickSort, "sorted")
complexity = lib.test(quickSort, "reversed")
complexity = lib.test(quickSort, "partial")
complexity = lib.test(quickSort, "Ksorted")
''' Result
Running quickSort(random array)...
Completed quickSort(random array): O(nlog(n))
Running quickSort(sorted array)...
Completed quickSort(sorted array): O(nlog(n))
Running quickSort(reversed array)...
Completed quickSort(reversed array): O(nlog(n))
Running quickSort(partial array)...
Completed quickSort(partial array): O(nlog(n))
Running quickSort(Ksorted array)...
Completed quickSort(ksorted array): O(nlog(n))
'''
Selection Sort Example
from bigO import BigO
def selectionSort(array): # in-place, unstable
'''
Best : O(n^2) Time | O(1) Space
Average : O(n^2) Time | O(1) Space
Worst : O(n^2) Time | O(1) Space
'''
currentIdx = 0
while currentIdx < len(array) - 1:
smallestIdx = currentIdx
for i in range(currentIdx + 1, len(array)):
if array[smallestIdx] > array[i]:
smallestIdx = i
array[currentIdx], array[smallestIdx] = array[smallestIdx], array[currentIdx]
currentIdx += 1
return array
lib = BigO()
complexity = lib.test(selectionSort, "random")
complexity = lib.test(selectionSort, "sorted")
complexity = lib.test(selectionSort, "reversed")
complexity = lib.test(selectionSort, "partial")
complexity = lib.test(selectionSort, "Ksorted")
''' Result
Running selectionSort(random array)...
Completed selectionSort(random array): O(n^2)
Running selectionSort(sorted array)...
Completed selectionSort(sorted array): O(n^2)
Running selectionSort(reversed array)...
Completed selectionSort(reversed array): O(n^2)
Running selectionSort(partial array)...
Completed selectionSort(partial array): O(n^2)
Running selectionSort(Ksorted array)...
Completed selectionSort(ksorted array): O(n^2)
'''
test_all(mySort) Example
We can test all "random", "sorted", "reversed", "partial", "Ksorted", "almost_equal" at once, and it shows, best, average and worst time complexity
from bigO import BigO
lib = BigO()
lib.test_all(bubbleSort)
lib.test_all(insertSort)
result = lib.test_all(selectionSort)
print(result) # Dictionary
''' Result
Running bubbleSort(tests)
Best : O(n) Time
Average : O(n^2) Time
Worst : O(n^2) Time
Running insertSort(tests)
Best : O(n) Time
Average : O(n^2) Time
Worst : O(n^2) Time
Running selectionSort(tests)
Best : O(n^2) Time
Average : O(n^2) Time
Worst : O(n^2) Time
{'random': 'O(n^2)', 'sorted': 'O(n^2)', 'reversed': 'O(n^2)', 'partial': 'O(n^2)', 'Ksorted': 'O(n^2)'}
'''
runtime(mySort) Example
array: "random", "big", "sorted", "partial", "reversed", "Ksorted", "hole", "equal", "almost_equal" or your custom array.
from bigO import BigO
from bigO import algorithm
lib = BigO()
timeTook, result = lib.runtime(algorithm.bubbleSort, "random", 5000)
custom = ["abc", "bbc", "ccd", "ef", "az"]
timeTook, result = lib.runtime(algorithm.bubbleSort, custom)
''' Result
Running bubbleSort(len 5000 random array)
Took 2.61346s to sort bubbleSort(random)
Running bubbleSort(len 5 custom array)
Took 0.00001s to sort bubbleSort(custom)
'''
compare(mySort, thisSort) Example
array: "random", "big", "sorted", "partial", "reversed", "Ksorted", "hole", "equal", "almost_equal", "all" or your custom array.
lib = BigO()
result = lib.compare(algorithm.bubbleSort, algorithm.insertSort, "reversed", 5000)
result = lib.compare(algorithm.insertSort, algorithm.insertSortOptimized, "reversed", 5000)
result = lib.compare(algorithm.quickSort, algorithm.quickSortHoare, "reversed", 50000)
result = lib.compare(algorithm.timSort, algorithm.introSort, "reversed", 50000)
result = lib.compare(sorted, algorithm.introSort, "reversed", 50000)
result = lib.compare(algorithm.bubbleSort, algorithm.insertSort, "all", 5000)
print(result)
'''Result
bubbleSort is 3.6% faster than insertSort on reversed case
Time Difference: 0.04513s
insertSortOptimized is 5959.3% faster than insertSort on reversed case
Time Difference: 1.25974s
quickSortHoare is 153.6% faster than quickSort on reversed case
Time Difference: 0.09869s
introSort is 206.6% faster than timSort on reversed case
Time Difference: 0.12597s
sorted is 12436.9% faster than introSort on reversed case
Time Difference: 0.06862s
Running bubbleSort(tests) vs insertSort(tests)
insertSort is 32.6% faster than bubbleSort on 6 of 8 cases
Time Difference: 0.11975s
{'bubbleSort': 0.4875642249999998, 'insertSort': 0.3678110916666666}
'''
@isSorted
If it sorts correctly, it shows: "mySort sorts correctly."
Otherwise, it shows like, "mySort doesn't sort correctly." "At N index: [...100, -72, 121...]
from bigO import BigO
from bigO import utils
@utils.is_sorted
def bubbleSort(array): # in-place | stable
isSorted = False
counter = 1 # not correct
while not isSorted:
isSorted = True
for i in range(len(array) - 1 - counter):
if array[i] > array[i + 1]:
array[i], array[i + 1] = array[i + 1], array[i]
isSorted = False
counter += 1
return array
if __name__ == "__main__":
bubbleSort(BigO.gen_random_ints(100))
''' Result
bubbleSort doesn't sort correctly.
At 99 index: [...99, -76]
'''
Array generators
from bigO import BigO
lib = BigO()
arr = lib.gen_random_ints(100)
arr = lib.gen_random_big_ints(100)
arr = lib.gen_random_strings(100)
arr = lib.gen_sorted_ints(100)
arr = lib.gen_reversed_ints(100)
arr = lib.gen_partial_ints(100)
arr = lib.gen_ksorted_ints(100)
arr = lib.gen_equal_ints(100)
arr = lib.gen_almost_equal_ints(100)
arr = lib.gen_hole_ints(100)
Test arrays sample (size = 20)
Results vary.
random = [15, 15, -11, -16, -19, -16, -14, 14, 19, 2, 18, -10, 5, -17, -4, -2, 9, 12, 8, 12]
randomBig = [-996061023766482, 347955820115093, ...]
string = ['rwe55pi8hkwpjv5rhhoo', '5ecvybo5xi8p25wanh3t', ...]
sorted = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
reversed = [19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
partial = [-18, 14, 7, -11, 17, 5, 6, 7, 8, 9, 14, 9, -13, 0, 14, -17, -18, -9, -16, 14]
Ksorted = [-4, -5, -6, -7, -8, -9, -10, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 8]
almost_equal = [19, 19, 19, 20, 20, 19, 20, 20, 21, 19, 20, 21, 21, 19, 19, 21, 20, 19, 21, 19]
equal = [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16]
hole = [-7, -7, -7, -7, -7, -7, -9999, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7]
Built-in algorithms list
Visit here to see codes
BinaryInsertSort, BubbleSort, CountSort, gnomeSort, heapSort, InsertSort, InsertSortOptimized, IntroSort, mergeSort, quickSort(random pivot), quickSortHoare(Hoare+Tail recur+InsertionSort), timSort(simplified)
Benchmarks
Visit here for more results
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file big-O calculator-0.1.0.tar.gz
.
File metadata
- Download URL: big-O calculator-0.1.0.tar.gz
- Upload date:
- Size: 23.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 27b099de6c28a1f52bac98206d8b293c855949a6f7fca50afa296d185c87aa00 |
|
MD5 | 3016b1ad708f60a03989e9454e6c873b |
|
BLAKE2b-256 | 88cdf07d2e8d016734400610fe2c651fdb271b5b02b33cbe44c8b64563e8edec |