Skip to main content

A calculator to predict big-O of sorting functions

Project description

Table of Contents

Big-O Caculator

A big-O calculator to estimate time complexity of sorting functions.

inspired by : https://github.com/ismaelJimenez/cpp.leastsq

Hits Downloads

Installation

pip install big-O-calculator

What it does

You can test time complexity, calculate runtime, compare two sorting algorithms

Results may vary.

(n : [10, 100, 1_000, 10_000, 100_000])

Big-O calculator

Methods:
    def test(function, array="random", limit=True, prtResult=True):
        It will run only specified array test, returns Tuple[str, estimatedTime]

    def test_all(function):
        It will run all test cases, prints (best, average, worst cases), returns dict

    def runtime(function, array="random", size, epoch=1):
        It will simply returns execution time to sort length of size of test array, returns Tuple[float, List[Any]]

    def compare(function1, function2, array, size, epoch=3):
        It will compare two functions on {array} case, returns dict

Methods parameters

def test(**args):
    function [Callable]: a function to call.
    array [str]: "random", "big", "sorted", "reversed", "partial", "Ksorted", "string", "almost_equal", "equal", "hole".
    limit [bool] = True: To break before it takes "forever" to sort an array. (ex. selectionSort)
    prtResult [bool] = True: Whether to print result by itself

def test_all(**args):
    function [Callable]: a function to call.

def runtime(**args):
    function [Callable]: a function to call.
    array: "random", "big", "sorted", "partial", "reversed", "Ksorted" ,
        "hole", "equal", "almost_equal" or your custom array.
    size [int]: How big test array should be.
    epoch [int]: How many tests to run and calculte average.
    prtResult (bool): Whether to print the result by itself. (default = True)

def compare(**args):
    function1 [Callable]: a function to compare.
    function2 [Callable]: a function to compare.
    array [str]|[List]: "random", "big", "sorted", "partial", "reversed", "Ksorted", 
        "hole", "equal", "almost_equal", "all" or your custom array.
    size [int]: How big test array should be.

Info: To see the result of function, return the array.

These methods will also check if the function sorts correctly.

"K" in Ksorted uses testSize.bit_length().

Usage

from bigO import BigO
from bigO import algorithm

lib = BigO()

lib.test(bubbleSort, "random")
lib.test_all(bubbleSort)
lib.runtime(bubbleSort, "random", 5000)
lib.runtime(algorithm.insertSort, "reversed", 32)
lib.compare(algorithm.insertSort, algorithm.bubbleSort, "all", 5000)

Quick Sort Example

from bigO import BigO
from random import randint

def quickSort(array):  # in-place | not-stable
    """
    Best : O(nlogn) Time | O(logn) Space
    Average : O(nlogn) Time | O(logn) Space
    Worst : O(n^2) Time | O(logn) Space
    """
    if len(array) <= 1:
        return array
    smaller, equal, larger = [], [], []
    pivot = array[randint(0, len(array) - 1)]
    for x in array:
        if x < pivot:
            smaller.append(x)
        elif x == pivot:
            equal.append(x)
        else:
            larger.append(x)
    return quickSort(smaller) + equal + quickSort(larger)


lib = BigO()
complexity = lib.test(quickSort, "random")
complexity = lib.test(quickSort, "sorted")
complexity = lib.test(quickSort, "reversed")
complexity = lib.test(quickSort, "partial")
complexity = lib.test(quickSort, "Ksorted")

''' Result
Running quickSort(random array)...
Completed quickSort(random array): O(nlog(n))

Running quickSort(sorted array)...
Completed quickSort(sorted array): O(nlog(n))

Running quickSort(reversed array)...
Completed quickSort(reversed array): O(nlog(n))

Running quickSort(partial array)...
Completed quickSort(partial array): O(nlog(n))

Running quickSort(Ksorted array)...
Completed quickSort(ksorted array): O(nlog(n))
'''

Selection Sort Example

from bigO import BigO

def selectionSort(array):  # in-place, unstable
    '''
    Best : O(n^2) Time | O(1) Space
    Average : O(n^2) Time | O(1) Space
    Worst : O(n^2) Time | O(1) Space
    '''
    currentIdx = 0
    while currentIdx < len(array) - 1:
        smallestIdx = currentIdx
        for i in range(currentIdx + 1, len(array)):
            if array[smallestIdx] > array[i]:
                smallestIdx = i
        array[currentIdx], array[smallestIdx] = array[smallestIdx], array[currentIdx]
        currentIdx += 1
    return array


lib = BigO()
complexity = lib.test(selectionSort, "random")
complexity = lib.test(selectionSort, "sorted")
complexity = lib.test(selectionSort, "reversed")
complexity = lib.test(selectionSort, "partial")
complexity = lib.test(selectionSort, "Ksorted")

''' Result
Running selectionSort(random array)...
Completed selectionSort(random array): O(n^2)
Running selectionSort(sorted array)...
Completed selectionSort(sorted array): O(n^2)
Running selectionSort(reversed array)...
Completed selectionSort(reversed array): O(n^2)
Running selectionSort(partial array)...
Completed selectionSort(partial array): O(n^2)
Running selectionSort(Ksorted array)...
Completed selectionSort(ksorted array): O(n^2)
'''

test_all(mySort) Example

We can test all "random", "sorted", "reversed", "partial", "Ksorted", "almost_equal" at once, and it shows, best, average and worst time complexity

from bigO import BigO

lib = BigO()

lib.test_all(bubbleSort)
lib.test_all(insertSort)

result = lib.test_all(selectionSort)

print(result)  # Dictionary


''' Result
Running bubbleSort(tests)
Best : O(n) Time
Average : O(n^2) Time
Worst : O(n^2) Time
Running insertSort(tests)
Best : O(n) Time
Average : O(n^2) Time
Worst : O(n^2) Time
Running selectionSort(tests)
Best : O(n^2) Time
Average : O(n^2) Time
Worst : O(n^2) Time

{'random': 'O(n^2)', 'sorted': 'O(n^2)', 'reversed': 'O(n^2)', 'partial': 'O(n^2)', 'Ksorted': 'O(n^2)'}
'''

runtime(mySort) Example

array: "random", "big", "sorted", "partial", "reversed", "Ksorted", "hole", "equal", "almost_equal" or your custom array.

from bigO import BigO
from bigO import algorithm

lib = BigO()

timeTook, result = lib.runtime(algorithm.bubbleSort, "random", 5000)

custom = ["abc", "bbc", "ccd", "ef", "az"]

timeTook, result = lib.runtime(algorithm.bubbleSort, custom)

''' Result
Running bubbleSort(len 5000 random array)
Took 2.61346s to sort bubbleSort(random)

Running bubbleSort(len 5 custom array)
Took 0.00001s to sort bubbleSort(custom)
'''

compare(mySort, thisSort) Example

array: "random", "big", "sorted", "partial", "reversed", "Ksorted", "hole", "equal", "almost_equal", "all" or your custom array.

lib = BigO()

result = lib.compare(algorithm.bubbleSort, algorithm.insertSort, "reversed", 5000)
result = lib.compare(algorithm.insertSort, algorithm.insertSortOptimized, "reversed", 5000)
result = lib.compare(algorithm.quickSort, algorithm.quickSortHoare, "reversed", 50000)
result = lib.compare(algorithm.timSort, algorithm.introSort, "reversed", 50000)
result = lib.compare(sorted, algorithm.introSort, "reversed", 50000)

result = lib.compare(algorithm.bubbleSort, algorithm.insertSort, "all", 5000)

print(result)

'''Result
bubbleSort is 3.6% faster than insertSort on reversed case
Time Difference: 0.04513s
insertSortOptimized is 5959.3% faster than insertSort on reversed case
Time Difference: 1.25974s
quickSortHoare is 153.6% faster than quickSort on reversed case
Time Difference: 0.09869s
introSort is 206.6% faster than timSort on reversed case
Time Difference: 0.12597s
sorted is 12436.9% faster than introSort on reversed case
Time Difference: 0.06862s

Running bubbleSort(tests) vs insertSort(tests)
insertSort is 32.6% faster than bubbleSort on 6 of 8 cases
Time Difference: 0.11975s

{'bubbleSort': 0.4875642249999998, 'insertSort': 0.3678110916666666}
'''

@isSorted

If it sorts correctly, it shows: "mySort sorts correctly."

Otherwise, it shows like, "mySort doesn't sort correctly." "At N index: [...100, -72, 121...]

from bigO import BigO
from bigO import utils

@utils.is_sorted
def bubbleSort(array):  # in-place | stable
    isSorted = False
    counter = 1  # not correct
    while not isSorted:
        isSorted = True
        for i in range(len(array) - 1 - counter):
            if array[i] > array[i + 1]:
                array[i], array[i + 1] = array[i + 1], array[i]
                isSorted = False

        counter += 1

    return array


if __name__ == "__main__":
    bubbleSort(BigO.gen_random_ints(100))

''' Result
bubbleSort doesn't sort correctly.
At 99 index: [...99, -76]
'''

Array generators

from bigO import BigO

lib = BigO()

arr = lib.gen_random_ints(100)
arr = lib.gen_random_big_ints(100)
arr = lib.gen_random_strings(100)
arr = lib.gen_sorted_ints(100)
arr = lib.gen_reversed_ints(100)
arr = lib.gen_partial_ints(100)
arr = lib.gen_ksorted_ints(100)
arr = lib.gen_equal_ints(100)
arr = lib.gen_almost_equal_ints(100)
arr = lib.gen_hole_ints(100)

Test arrays sample (size = 20)

Results vary.

random = [15, 15, -11, -16, -19, -16, -14, 14, 19, 2, 18, -10, 5, -17, -4, -2, 9, 12, 8, 12]
randomBig = [-996061023766482, 347955820115093, ...]
string = ['rwe55pi8hkwpjv5rhhoo', '5ecvybo5xi8p25wanh3t', ...]
sorted = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
reversed = [19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
partial = [-18, 14, 7, -11, 17, 5, 6, 7, 8, 9, 14, 9, -13, 0, 14, -17, -18, -9, -16, 14]
Ksorted = [-4, -5, -6, -7, -8, -9, -10, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 8]
almost_equal = [19, 19, 19, 20, 20, 19, 20, 20, 21, 19, 20, 21, 21, 19, 19, 21, 20, 19, 21, 19]
equal = [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16]
hole = [-7, -7, -7, -7, -7, -7, -9999, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7]

Built-in algorithms list

Visit here to see codes

BinaryInsertSort, BubbleSort, CountSort, gnomeSort, heapSort, InsertSort, InsertSortOptimized, IntroSort, mergeSort, quickSort(random pivot), quickSortHoare(Hoare+Tail recur+InsertionSort), timSort(simplified)

Benchmarks

Visit here for more results

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

big-O calculator-0.1.0.tar.gz (23.0 kB view details)

Uploaded Source

File details

Details for the file big-O calculator-0.1.0.tar.gz.

File metadata

  • Download URL: big-O calculator-0.1.0.tar.gz
  • Upload date:
  • Size: 23.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for big-O calculator-0.1.0.tar.gz
Algorithm Hash digest
SHA256 27b099de6c28a1f52bac98206d8b293c855949a6f7fca50afa296d185c87aa00
MD5 3016b1ad708f60a03989e9454e6c873b
BLAKE2b-256 88cdf07d2e8d016734400610fe2c651fdb271b5b02b33cbe44c8b64563e8edec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page